meda: Matrix Exploratory Data Analysis is an R package for exploring data in the form of matrices.
for the python version, go here https://github.com/neurodata-nomads/pymeda
Currently there seems to be a problem installing in RStudio. The best way seems to be installing from R via command line.
To download and install run the following in R:
require(devtools)
devtools::install_github("neurodata/meda")
To run meda
on your own data do the following.
Supposing your data is in a csv file with a header:
require(meda)
dat <- read.csv("fileName.csv", header=TRUE)
First we center the feature columns and then we proceed with exploring the data.
dato <- iris[, -5]
dat <- data.frame(scale(dato, center = TRUE, scale = FALSE))
truth <- iris[, 5]
## optional column classes or feature classes
ccol <- rep(c("darkgreen", "purple"), 2)
plot(mlocation(dato, ccol = ccol))
plot(d1heat(dat, ccol = ccol))
plot(outliers(dat))
plot(medacor(dat, ccol = ccol))
plot(cumvar(dat))
pairhex(dat)
h <- hmc(dat, ccol = ccol)
plot(h, pch = truth)
plotDend(h)
stackM(h, centered = TRUE, ccol = ccol, depth = h$dat$height)
stackM(h, centered = TRUE, ccol = ccol)
clusterMeans(h)
follow instructions here