-
-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* ENH add multi-view example
- Loading branch information
Showing
1 changed file
with
135 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
""" | ||
===================================================== | ||
Compute partial AUC using multi-view MIGHT (MV-MIGHT) | ||
===================================================== | ||
An example using :class:`~sktree.stats.FeatureImportanceForestClassifier` for nonparametric | ||
multivariate hypothesis test, on simulated mutli-view datasets. Here, we present | ||
how to estimate partial AUROC from a multi-view feature set. | ||
We simulate a dataset with 510 features, 1000 samples, and a binary class target variable. | ||
The first 10 features (X) are strongly correlated with the target, and the second | ||
feature set (W) is weakly correlated with the target (y). | ||
We then use MV-MIGHT to calculate the partial AUC of these sets. | ||
""" | ||
|
||
import numpy as np | ||
from scipy.special import expit | ||
|
||
from sktree import HonestForestClassifier | ||
from sktree.stats import FeatureImportanceForestClassifier | ||
from sktree.tree import DecisionTreeClassifier, MultiViewDecisionTreeClassifier | ||
|
||
seed = 12345 | ||
rng = np.random.default_rng(seed) | ||
|
||
# %% | ||
# Simulate data | ||
# ------------- | ||
# We simulate the two feature sets, and the target variable. We then combine them | ||
# into a single dataset to perform hypothesis testing. | ||
|
||
n_samples = 1000 | ||
n_features_set = 500 | ||
mean = 1.0 | ||
sigma = 2.0 | ||
beta = 5.0 | ||
|
||
unimportant_mean = 0.0 | ||
unimportant_sigma = 4.5 | ||
|
||
# first sample the informative features, and then the uniformative features | ||
X_important = rng.normal(loc=mean, scale=sigma, size=(n_samples, 10)) | ||
X_unimportant = rng.normal( | ||
loc=unimportant_mean, scale=unimportant_sigma, size=(n_samples, n_features_set) | ||
) | ||
X = np.hstack([X_important, X_unimportant]) | ||
|
||
# simulate the binary target variable | ||
y = rng.binomial(n=1, p=expit(beta * X_important[:, :10].sum(axis=1)), size=n_samples) | ||
|
||
# %% | ||
# Use partial AUC as test statistic | ||
# --------------------------------- | ||
# You can specify the maximum specificity by modifying ``max_fpr`` in ``statistic``. | ||
|
||
n_estimators = 125 | ||
max_features = 100 | ||
metric = "auc" | ||
test_size = 0.2 | ||
n_jobs = -1 | ||
honest_fraction = 0.5 | ||
max_fpr = 0.1 | ||
|
||
est_mv = FeatureImportanceForestClassifier( | ||
estimator=HonestForestClassifier( | ||
n_estimators=n_estimators, | ||
max_features=max_features, | ||
tree_estimator=MultiViewDecisionTreeClassifier(feature_set_ends=[10, 10 + n_features_set]), | ||
honest_fraction=honest_fraction, | ||
n_jobs=n_jobs, | ||
), | ||
random_state=seed, | ||
test_size=test_size, | ||
permute_per_tree=True, | ||
sample_dataset_per_tree=True, | ||
) | ||
|
||
# we test with the multi-view setting, thus should return a higher AUC | ||
stat, posterior_arr, samples = est_mv.statistic( | ||
X, | ||
y, | ||
metric=metric, | ||
return_posteriors=True, | ||
max_fpr=max_fpr, | ||
) | ||
|
||
print(f"ASH-90 / Partial AUC: {stat}") | ||
print(f"Shape of Observed Samples: {samples.shape}") | ||
print(f"Shape of Tree Posteriors for the positive class: {posterior_arr.shape}") | ||
|
||
# %% | ||
# Repeat without multi-view | ||
# --------------------------------- | ||
# This feature set has a smaller statistic, which is expected due to its lack of multi-view setting. | ||
|
||
est = FeatureImportanceForestClassifier( | ||
estimator=HonestForestClassifier( | ||
n_estimators=n_estimators, | ||
max_features=max_features, | ||
tree_estimator=DecisionTreeClassifier(), | ||
honest_fraction=honest_fraction, | ||
n_jobs=n_jobs, | ||
), | ||
random_state=seed, | ||
test_size=test_size, | ||
permute_per_tree=True, | ||
sample_dataset_per_tree=True, | ||
) | ||
|
||
stat, posterior_arr, samples = est.statistic( | ||
X, | ||
y, | ||
metric=metric, | ||
return_posteriors=True, | ||
max_fpr=max_fpr, | ||
) | ||
|
||
print(f"ASH-90 / Partial AUC: {stat}") | ||
print(f"Shape of Observed Samples: {samples.shape}") | ||
print(f"Shape of Tree Posteriors for the positive class: {posterior_arr.shape}") | ||
|
||
# %% | ||
# All posteriors are saved within the model | ||
# ----------------------------------------- | ||
# Extract the results from the model variables anytime. You can save the model with ``pickle``. | ||
# | ||
# ASH-90 / Partial AUC: ``est_mv.observe_stat_`` | ||
# | ||
# Observed Samples: ``est_mv.observe_samples_`` | ||
# | ||
# Tree Posteriors for the positive class: ``est_mv.observe_posteriors_`` | ||
# (n_trees, n_samples_test, 1) | ||
# | ||
# True Labels: ``est_mv.y_true_final_`` |