-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
459 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import seaborn as sn | ||
import matplotlib.pyplot as plt | ||
import pickle | ||
import cv2 | ||
from sklearn.metrics import confusion_matrix | ||
from sklearn.metrics import f1_score | ||
from keras.utils.np_utils import to_categorical | ||
from sklearn.metrics import roc_curve, auc | ||
|
||
|
||
test = pd.read_csv("/home/venkat/ClothingAttributeDataset/preprocessed/category_test.csv") | ||
labels= list(test.columns) | ||
del labels[0] | ||
y_true = np.asarray(test[labels]) | ||
print y_true.shape | ||
|
||
num_classes = len(labels) | ||
with open('/home/venkat/y_pred.pkl', 'rb') as f: | ||
y_pred = pickle.load(f) | ||
|
||
y_pred = (y_pred == y_pred.max(axis=1)[:,None]).astype(int) | ||
y_pred = y_pred.argmax(1) | ||
y_true = y_true.argmax(1) | ||
|
||
|
||
# Micro .. Macro F1 scores | ||
print f1_score(y_true, y_pred, average='micro') | ||
print f1_score(y_true, y_pred, average='macro') | ||
|
||
|
||
# Plot confusion matrix and normalized confusion matrix | ||
cm = confusion_matrix(y_true, y_pred) | ||
|
||
df_cm = pd.DataFrame(cm, index = [i for i in labels], | ||
columns = [i for i in labels]) | ||
plt.figure(figsize = (10,7)) | ||
sn.heatmap(df_cm, annot=True) | ||
plt.show() | ||
|
||
cm_norm = cm / cm.astype(np.float).sum(axis=0) | ||
df_cm_norm = pd.DataFrame(cm_norm, index = [i for i in labels], | ||
columns = [i for i in labels]) | ||
plt.figure(figsize = (10,7)) | ||
sn.heatmap(df_cm_norm, annot=True) | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
import cv2 | ||
import numpy as np | ||
import random | ||
import pandas as pd | ||
import math | ||
import glob | ||
import pickle | ||
|
||
coef = np.array([[[0.114, 0.587, 0.299]]]) | ||
|
||
|
||
def random_crop(img, size): | ||
w, h = img.shape[0], img.shape[1] | ||
rangew = (w - size) // 2 | ||
rangeh = (h - size) // 2 | ||
offsetw = 0 if rangew == 0 else np.random.randint(rangew) | ||
offseth = 0 if rangeh == 0 else np.random.randint(rangeh) | ||
return img[offsetw:offsetw + size, offseth:offseth + size, :] | ||
|
||
|
||
def center_crop(img, size): | ||
centerw, centerh = img.shape[0] // 2, img.shape[1] // 2 | ||
halfw, halfh = size // 2, size // 2 | ||
return img[centerw - halfw:centerw + halfw, centerh - halfh:centerh + halfh, :] | ||
|
||
|
||
def resize(img, size): | ||
return cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC) | ||
|
||
|
||
def random_flip(img, size): | ||
if np.random.uniform() < 0.5: | ||
# horizontal_flip | ||
img = np.asarray(img).swapaxes(1, 0) | ||
img = img[::-1, ...] | ||
img = img.swapaxes(0, 1) | ||
|
||
else: | ||
# vertical_flip | ||
img = np.asarray(img).swapaxes(0, 0) | ||
img = img[::-1, ...] | ||
img = img.swapaxes(0, 0) | ||
|
||
return img | ||
|
||
|
||
def brightness_aug(img, brightness=0.2): | ||
alpha = 1.0 + np.random.uniform(-brightness, brightness) | ||
img *= alpha | ||
return img | ||
|
||
|
||
def contrast_aug(img, contrast=0.2): | ||
alpha = 1.0 + np.random.uniform(-contrast, contrast) | ||
gray = img * coef | ||
gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray) | ||
img *= alpha | ||
img += gray | ||
return img | ||
|
||
|
||
def saturation_aug(img, saturation=0.4): | ||
alpha = 1.0 + np.random.uniform(-saturation, saturation) | ||
gray = img * coef | ||
gray = np.sum(gray, axis=2, keepdims=True) | ||
gray *= (1.0 - alpha) | ||
img *= alpha | ||
img += gray | ||
return img | ||
|
||
|
||
def color_jitter(img): | ||
lst = [brightness_aug, contrast_aug, saturation_aug] | ||
random.shuffle(lst) | ||
for aug in lst: | ||
img = aug(img) | ||
return img.astype(np.uint8) | ||
|
||
|
||
def normalize(img): | ||
mean_pixel = [103.939, 116.779, 123.68] | ||
img = img.astype(np.float32, copy=False) | ||
for c in range(3): | ||
img[:, :, c] = img[:, :, c] - mean_pixel[c] | ||
# img = img.transpose((2,0,1)) | ||
# img = np.expand_dims(img, axis=0) | ||
return img | ||
|
||
|
||
IMAGES_FOLDER = "/home/venkat/ClothingAttributeDataset/images/" | ||
|
||
# preprocess train data | ||
train_df = pd.read_csv("/home/venkat/ClothingAttributeDataset/preprocessed/category_train.csv") | ||
train_imgs = list(train_df["images"]) | ||
train_labels = train_df[['shirt', 'sweater', 't-shirt', 'outerwear', 'suit', 'tank_top', 'dress']].values | ||
|
||
X_train = [] | ||
y_train = [] | ||
|
||
for i in range(len(train_imgs)): | ||
img_path = IMAGES_FOLDER + train_imgs[i] | ||
img = cv2.imread(img_path) | ||
img_resize = normalize(resize(img, 224)) | ||
img_rf = random_flip(img_resize, 224) | ||
img_crop = normalize(center_crop(img, 224)) | ||
img_cj = normalize(color_jitter(resize(img, 224).astype(np.float64))) | ||
X_train += [img_resize, img_rf, img_crop, img_cj] | ||
temp = [list(train_labels[i]), list(train_labels[i]), list(train_labels[i]), list(train_labels[i])] | ||
y_train += temp | ||
|
||
X_train = np.asarray(X_train) | ||
y_train = np.asarray(y_train) | ||
|
||
pickle.dump(X_train, open("X_train.pkl", "wb"), pickle.HIGHEST_PROTOCOL) | ||
pickle.dump(y_train, open("y_train.pkl", "wb"), pickle.HIGHEST_PROTOCOL) | ||
|
||
# preprocess test data | ||
test_df = pd.read_csv("/home/venkat/ClothingAttributeDataset/preprocessed/category_test.csv") | ||
test_imgs = list(test_df["images"]) | ||
test_labels = test_df[['shirt', 'sweater', 't-shirt', 'outerwear', 'suit', 'tank_top', 'dress']].values | ||
|
||
X_test = [] | ||
y_test = [] | ||
|
||
for i in range(len(test_imgs)): | ||
img_path = IMAGES_FOLDER + test_imgs[i] | ||
img = cv2.imread(img_path) | ||
img_resize = normalize(resize(img, 224)) | ||
X_test += [img_resize] | ||
temp = [list(test_labels[i])] | ||
y_test += temp | ||
|
||
X_test = np.asarray(X_test) | ||
y_test = np.asarray(y_test) | ||
|
||
pickle.dump(X_test, open("X_test.pkl", "wb"), pickle.HIGHEST_PROTOCOL) | ||
pickle.dump(y_test, open("y_test.pkl", "wb"), pickle.HIGHEST_PROTOCOL) | ||
|
||
print X_train.shape | ||
print X_test.shape |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import glob | ||
import scipy.io | ||
import shutil | ||
from tqdm import tqdm | ||
import os | ||
|
||
|
||
def merge_dicts(*dict_args): | ||
result = {} | ||
for dictionary in dict_args: | ||
result.update(dictionary) | ||
return result | ||
|
||
|
||
ROOT = "/home/venkat/ClothingAttributeDataset/" | ||
LABELS = "/home/venkat/ClothingAttributeDataset/labels/" | ||
PREPROCESS = "/home/venkat/ClothingAttributeDataset/preprocessed/" | ||
|
||
if not os.path.exists(PREPROCESS): | ||
os.makedirs(PREPROCESS) | ||
|
||
val = ["No", "Yes"] | ||
data_colors = {'black': val, 'blue': val, 'brown': val, 'cyan': val, 'gray': val, 'green': val, 'purple': val, | ||
'red': val, 'white': val, 'yellow': val, 'purple': val, 'many_colors': val} | ||
|
||
data_pattern = {'pattern_floral': val, 'pattern_graphics': val, 'pattern_plaid': val, | ||
'pattern_solid': val, 'pattern_spot': val, 'pattern_stripe': val} | ||
|
||
data_binary = {'collar': val, 'gender': ["male", "female"], 'necktie': val, | ||
'placket': val, 'skin_exposure': ["low", "high"], 'scarf': val} | ||
|
||
data_multi = {'sleevelength': ["no", "short", "long"], 'neckline': ["v-shape", "round", "other"], | ||
'category': ["shirt", "sweater", "t-shirt", "outerwear", "suit", "tank_top", "dress"]} | ||
|
||
data = merge_dicts(data_colors, data_binary, data_pattern) | ||
|
||
category_df = pd.DataFrame() | ||
|
||
for filename in glob.iglob(LABELS + '*.mat'): | ||
feature_name = filename.split("/")[-1].split(".")[0][:-3] | ||
|
||
if feature_name == "category": | ||
labels = data_multi[feature_name] | ||
mat = scipy.io.loadmat(filename)['GT'].flatten() | ||
category_df = pd.get_dummies(mat, prefix="category") | ||
category_df.columns = labels | ||
category_df.insert(0, "images", category_df.index.map(lambda val: "{:06d}.jpg".format(val + 1))) | ||
category_df = category_df[~np.isnan(mat)] | ||
|
||
# train-test split randomly | ||
msk = np.random.rand(len(category_df)) < 0.8 | ||
train = category_df[msk] | ||
test = category_df[~msk] | ||
|
||
# Data Percentage for each category | ||
for key in data_multi['category']: | ||
print key, round(100 * category_df[key].value_counts()[1]/ float(category_df.shape[0]), 2) | ||
|
||
train.to_csv(PREPROCESS + "category_train" + ".csv", index=False) | ||
test.to_csv(PREPROCESS + "category_test" + ".csv", index=False) | ||
|
||
|
||
# For Keras ImageGenerator - Flow from Directory | ||
""" | ||
train_label_map = {} | ||
for item in data_multi['category']: | ||
train_label_map[item] = list(train.loc[train[item] == 1]["images"]) | ||
test_label_map = {} | ||
for item in data_multi['category']: | ||
test_label_map[item] = list(test.loc[test[item] == 1]["images"]) | ||
label_cols = list(train.columns) | ||
del label_cols[0] | ||
y_train = train[label_cols].values | ||
y_test = test[label_cols].values | ||
copy_path_train = ROOT + "category_train/" | ||
copy_path_test = ROOT + "category_test/" | ||
if not os.path.exists(copy_path_train): | ||
os.makedirs(copy_path_train) | ||
if not os.path.exists(copy_path_test): | ||
os.makedirs(copy_path_test) | ||
for key in train_label_map.keys(): | ||
class_path = copy_path_train + key | ||
if not os.path.exists(class_path): | ||
os.makedirs(class_path) | ||
img_paths = train_label_map[key] | ||
for path in img_paths: | ||
src_path = "/home/venkat/ClothingAttributeDataset/images/" + path | ||
copy_path = class_path + "/" + path | ||
shutil.copyfile(src_path, copy_path) | ||
for key in test_label_map.keys(): | ||
class_path = copy_path_test + key | ||
if not os.path.exists(class_path): | ||
os.makedirs(class_path) | ||
img_paths = test_label_map[key] | ||
for path in img_paths: | ||
src_path = "/home/venkat/ClothingAttributeDataset/images/" + path | ||
copy_path = class_path + "/" + path | ||
shutil.copyfile(src_path, copy_path) | ||
""" |
Oops, something went wrong.