Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add support for ExtractImagePatches #2188

Merged
merged 3 commits into from
Dec 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions tests/test_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@
matrix_diag_part = tf.compat.v1.matrix_diag_part
fake_quant_with_min_max_args = tf.quantization.fake_quant_with_min_max_args
fake_quant_with_min_max_vars = tf.quantization.fake_quant_with_min_max_vars
extract_image_patches = tf.image.extract_patches
elif Version(tf.__version__) >= Version("1.13"):
conv2d_backprop_input = tf.compat.v1.nn.conv2d_backprop_input
conv3d_transpose = tf.compat.v1.nn.conv3d_transpose
Expand All @@ -96,6 +97,7 @@
matrix_diag_part = tf.compat.v1.matrix_diag_part
fake_quant_with_min_max_args = tf.compat.v1.quantization.fake_quant_with_min_max_args
fake_quant_with_min_max_vars = tf.compat.v1.quantization.fake_quant_with_min_max_vars
extract_image_patches = tf.compat.v1.extract_image_patches
else:
conv2d_backprop_input = tf.nn.conv2d_backprop_input
conv3d_transpose = tf.nn.conv3d_transpose
Expand All @@ -113,6 +115,7 @@
is_inf = tf.is_inf
floormod = tf.floormod
matrix_diag_part = tf.matrix_diag_part
extract_image_patches = tf.extract_image_patches


def make_xval(shape):
Expand Down Expand Up @@ -6361,5 +6364,22 @@ def func(tensor, indices, updates):
self._run_test_case(func, [_OUTPUT], {_INPUT: tensor_val, _INPUT1: indices_val, _INPUT2: updates_val})
self._run_test_case(func, [_OUTPUT], {_INPUT: tensor_val, _INPUT1: indices64_val, _INPUT2: updates_val})

@check_opset_min_version(9, "EyeLike and ConstantOfShape")
def test_extract_image_patches(self):
for rates in [[1, 1], [1, 4], [4, 1], [3, 3]]:
for _, padding, x_shape, sizes, strides in get_conv_getdata():
def func(x):
return extract_image_patches(
x,
sizes=sizes,
strides=strides,
rates=[1] + rates + [1],
padding=padding,
name=_TFOUTPUT
)

x_val = make_xval(x_shape)
self._run_test_case(func, [_OUTPUT], {_INPUT: x_val})

if __name__ == '__main__':
unittest_main()
90 changes: 90 additions & 0 deletions tf2onnx/onnx_opset/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -2091,3 +2091,93 @@ def version_11(cls, ctx, node, **kwargs):
ctx.replace_all_inputs(node.output[3], sum_max_neg)

ctx.remove_node(node.name)


@tf_op("ExtractImagePatches")
class ExtractImagePatches:
@classmethod
def version_9(cls, ctx, node, **kwargs):
input_shape = ctx.get_shape(node.input[0])
output_shape = node.output_shapes[0]

sizes = node.get_attr_value("ksizes")
strides = node.get_attr_value("strides")
rates = node.get_attr_value("rates")
padding = node.get_attr_str("padding")

# This implementation of ExtractImagePatches does not generalize
# to outputs that are empty. For example:
#
# tf.image.extract_patches(
# np.random.rand(1, 1, 1, 1), sizes=[1, 2, 2, 1], strides=[1, 1, 1, 1],
# rates=[1, 1, 1, 1], padding="VALID"
# )
#
# succeeds with the output of:
#
# <tf.Tensor: shape=(1, 0, 0, 4), dtype=float64, numpy=array([], shape=(1, 0, 0, 4), dtype=float64)>
#
# whereas attempting the same here results in an "Invalid input shape" error for the "Conv" node.
utils.make_sure(0 not in output_shape, "Empty ExtractImagePatches output is unsupported.")
[_, size_rows, size_cols, _] = sizes

# Transform input into [N * C, H, W, 1].
transformed_input = ctx.make_node("Reshape", inputs=[
ctx.make_node("Transpose", inputs=node.input, attr=dict(perm=[0, 3, 1, 2])).output[0],
ctx.make_const(utils.make_name("new_shape"), np.int64([
input_shape[0] * input_shape[3],
input_shape[1],
input_shape[2],
1,
])).output[0],
])

# Create identity kernel.
k = size_rows * size_cols
identity_kernel = ctx.make_node("Reshape", inputs=[
ctx.make_node("EyeLike", inputs=[
ctx.make_node("ConstantOfShape", inputs=[
ctx.make_const(utils.make_name("eye_size"), np.array([k, k], dtype=np.int64)).output[0],
]).output[0],
]).output[0],
ctx.make_const(utils.make_name("new_shape"), np.array([
size_rows,
size_cols,
1,
k,
], dtype=np.int64)).output[0],
])

# Construct placeholder convolution node and transform into [N * C, K, ?H, ?W].
convolution = ctx.make_node("Conv", inputs=[transformed_input.output[0], identity_kernel.output[0]],
shapes=[[input_shape[0] * input_shape[3], output_shape[1], output_shape[2], k]],
attr=dict(strides=strides, dilations=rates, padding=padding, data_format="NHWC"),
dtypes=node.output_dtypes)

# Transform into [N, ?H, ?W, C * K].
output_node = ctx.make_node("Reshape", inputs=[
ctx.make_node("Transpose", inputs=[
ctx.make_node("Reshape", inputs=[
convolution.output[0],
ctx.make_const(utils.make_name("new_shape"), np.array([
input_shape[0],
input_shape[3],
output_shape[1],
output_shape[2],
k,
], dtype=np.int64)).output[0],
]).output[0],
], attr=dict(perm=[0, 2, 3, 4, 1])).output[0],
ctx.make_const(utils.make_name("new_shape"), np.array(output_shape, dtype=np.int64)).output[0],
])

# Replace original node.
ctx.replace_all_inputs(node.output[0], output_node.output[0])
ctx.remove_node(node.name)

# Transform convolution node.
kernel_shape = conv_kernel_shape(ctx, convolution, 1)
strides = conv_dims_attr(convolution, "strides")
dilations = conv_dims_attr(convolution, "dilations")
add_padding(ctx, convolution, kernel_shape, strides, dilations)
conv_convert_inputs(ctx, convolution, with_kernel=True)
Loading