Skip to content

Commit

Permalink
improve log-factorial calculation for improved speed
Browse files Browse the repository at this point in the history
  • Loading branch information
peterdsharpe committed Jan 17, 2024
1 parent 1d2d750 commit fa9d22d
Showing 1 changed file with 67 additions and 62 deletions.
129 changes: 67 additions & 62 deletions aerosandbox/tools/statistics/time_series_uncertainty_quantification.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@

import aerosandbox.numpy as np
from aerosandbox.tools.pretty_plots.utilities.natural_univariate_spline import NaturalUnivariateSpline as Spline
from scipy import signal
from aerosandbox.tools.code_benchmarking import Timer


def estimate_noise_standard_deviation(
Expand All @@ -29,9 +31,6 @@ def estimate_noise_standard_deviation(
The algorithm used in this function is a highly-optimized version of the math described in this repository,
part of an upcoming paper: https://github.com/peterdsharpe/aircraft-polar-reconstruction-from-flight-test
The repository is currently private, but will be public at some point; if you would like access to it,
please contact Peter Sharpe at pds@mit.edu.
Args:
data: A 1D NumPy array of time-series data.
Expand All @@ -46,28 +45,34 @@ def estimate_noise_standard_deviation(
raise ValueError("Data must have at least 2 points.")

if estimator_order is None:
estimator_order = min(
max(
1,
int(len(data) ** 0.5)
),
1000
)
estimator_order = int(np.clip(len(data) ** 0.5, 1, 1000))

##### Noise Variance Reconstruction #####
from scipy.special import gammaln
ln_factorial = lambda x: gammaln(x + 1)

### For speed, pre-compute the log-factorial of integers from 1 to estimator_order
ln_f = ln_factorial(np.arange(estimator_order + 1))
# ln_f = ln_factorial(np.arange(estimator_order + 1))
ln_f = np.cumsum(
np.log(
np.concatenate([
[1],
np.arange(1, estimator_order + 1)
])
)
)

### Create a convolutional kernel to vectorize the summation
coefficients = np.exp(
2 * ln_f[estimator_order] - ln_f - ln_f[::-1] - 0.5 * ln_factorial(2 * estimator_order)
) * (-1) ** np.arange(estimator_order + 1)
coefficients -= np.mean(coefficients) # Remove any bias introduced by floating-point error
log_coeffs = (
2 * ln_f[estimator_order] - ln_f - ln_f[::-1] - 0.5 * ln_factorial(2 * estimator_order)
)
indices = np.nonzero(log_coeffs >= np.log(1e-20) + log_coeffs[estimator_order // 2])[0]
coefficients = np.exp(log_coeffs[indices[0]:indices[-1] + 1])
coefficients[::2] *= -1 # Flip the sign on every other coefficient
coefficients -= np.mean(coefficients) # Remove any bias introduced by floating-point error

sample_stdev = np.convolve(data, coefficients[::-1], 'valid')
# sample_stdev = signal.convolve(data, coefficients[::-1], 'valid')
sample_stdev = signal.oaconvolve(data, coefficients[::-1], 'valid')
return np.mean(sample_stdev ** 2) ** 0.5


Expand Down Expand Up @@ -244,56 +249,56 @@ def bootstrap_fits(


if __name__ == '__main__':
# np.random.seed(1)
# N = 1000
# f_sample_over_f_signal = 1000
#
# t = np.arange(N)
# y = np.sin(2 * np.pi / f_sample_over_f_signal * t) + 0.1 * np.random.randn(len(t))
#
# print(estimate_noise_standard_deviation(y))
np.random.seed(1)
N = 1000
f_sample_over_f_signal = 1000

d = dict(np.load("raw_data.npz"))
t = np.arange(N)
y = np.sin(2 * np.pi / f_sample_over_f_signal * t) + 0.1 * np.random.randn(len(t))

x = d["airspeed"]
y = d["voltage"] * d["current"]
print(estimate_noise_standard_deviation(y, 1))

# estimate_noise_standard_deviation(x)
# d = dict(np.load("raw_data.npz"))
#
# x = d["airspeed"]
# y = d["voltage"] * d["current"]
#
# x_fit, y_bootstrap_fits = bootstrap_fits(
# # estimate_noise_standard_deviation(x)
# #
# # x_fit, y_bootstrap_fits = bootstrap_fits(
# # x, y,
# # x_stdev=None,
# # y_stdev=None,
# # n_bootstraps=20,
# # spline_degree=5,
# # )
# import matplotlib.pyplot as plt
# import aerosandbox.tools.pretty_plots as p
#
# fig, ax = plt.subplots(figsize=(7, 4))
#
# p.plot_with_bootstrapped_uncertainty(
# x, y,
# x_stdev=None,
# y_stdev=None,
# n_bootstraps=20,
# spline_degree=5,
# y_stdev=estimate_noise_standard_deviation(y[np.argsort(x)]),
# ci=[0.75, 0.95],
# color="coral",
# n_bootstraps=100,
# n_fit_points=200,
# # ci_to_alpha_mapping=lambda ci: 0.4,
# normalize=False,
# spline_degree=3,
# )
# plt.xlim(x.min(), x.max())
# plt.ylim(-10, 800)
# p.set_ticks(1, 0.25, 100, 25)
# plt.legend(
# loc="lower right"
# )
# p.show_plot(
# xlabel="Cruise Airspeed [m/s]",
# ylabel="Electrical Power Required [W]",
# title="Raw Data",
# legend=False,
# dpi=300
# )
import matplotlib.pyplot as plt
import aerosandbox.tools.pretty_plots as p

fig, ax = plt.subplots(figsize=(7, 4))

p.plot_with_bootstrapped_uncertainty(
x, y,
x_stdev=None,
y_stdev=estimate_noise_standard_deviation(y[np.argsort(x)]),
ci=[0.75, 0.95],
color="coral",
n_bootstraps=100,
n_fit_points=200,
# ci_to_alpha_mapping=lambda ci: 0.4,
normalize=False,
spline_degree=3,
)
plt.xlim(x.min(), x.max())
plt.ylim(-10, 800)
p.set_ticks(1, 0.25, 100, 25)
plt.legend(
loc="lower right"
)
p.show_plot(
xlabel="Cruise Airspeed [m/s]",
ylabel="Electrical Power Required [W]",
title="Raw Data",
legend=False,
dpi=300
)

0 comments on commit fa9d22d

Please sign in to comment.