Skip to content

Commit

Permalink
Merge pull request #133 from petrobras/documentation_improvements
Browse files Browse the repository at this point in the history
Add 7 citations and update 1 citation
  • Loading branch information
ricardoevvargas authored Dec 16, 2024
2 parents d8977c8 + deb8b1f commit d6cbc26
Showing 1 changed file with 15 additions and 1 deletion.
16 changes: 15 additions & 1 deletion LIST_OF_CITATIONS.md
Original file line number Diff line number Diff line change
Expand Up @@ -171,4 +171,18 @@ Journal of Computational and Applied Mathematics. 2020. https://doi.org/10.1016/

1. E.M. Turan. Advances in Optimisation and Machine Learning for Process Systems Engineering. Norwegian University of Science and Technology. Doctoral thesis. 2024. https://github.com/petrobras/3W/raw/main/docs/doctoral_thesis_evren_turan.pdf.

1. T.L.B. Dias, M.A. Marins, C.L. Pagliari, R.M.E. Barbosa, M.L.R. de Campos, E.A.B. Silva, S.L.Netto. Development of Oilwell Fault Classifiers Using a Wavelet-Based Multivariable Approach in a Modular Architecture. Society of Petroleum Engineers Journal. 2024. https://doi.org/10.2118/221463-PA.
1. T.L.B. Dias, M.A. Marins, C.L. Pagliari, R.M.E. Barbosa, M.L.R. de Campos, E.A.B. Silva, S.L.Netto. Development of Oilwell Fault Classifiers Using a Wavelet-Based Multivariable Approach in a Modular Architecture. SPE Journal. 2024. https://doi.org/10.2118/221463-PA.

1. A. Markaj, M. Mercangöz, A. Fay. Design and implementation of an Autonomous Systems Training Environment framework for control algorithm evaluation in autonomous plant operation. Computers & Chemical Engineering. 2024. https://doi.org/10.1016/j.compchemeng.2024.108798.

1. A. Melo, T.S.M. Lemos, R.M. Soares, D. Spina, N. Clavijo, L.F.O. Campos, M.M. Câmara, T. Feital, T.K. Anzai, P.H. Thompson, F.C. Diehl, J.C.Pinto. BibMon: An open source Python package for process monitoring, soft sensing, and fault diagnosis. Digital Chemical Engineering. 2024. https://doi.org/10.1016/j.dche.2024.100182.

1. R. Villamil, J. May, R. Fallgatter, R. Vargas, A. Nakashima, G. Peixer, J. Lozano, J. Barbosa. Assessment of deep-learning techniques for anomaly detection in offshore oil wells. Brazilian Congress of Thermal Sciences and Engineering. 2024.

1. A.O. Ifenaike, O.B. Oluwadare. Advancing Drilling Safety: Automated Anomaly Detection in Well Control Using Machine Learning Techniques. SPE Nigeria Annual International Conference and Exhibition. 2024. https://doi.org/10.2118/221626-MS.

1. G. Bayazitova, M. Anastasiadou, V.D. Santos. Oil and gas flow anomaly detection on offshore naturally flowing wells using deep neural networks. Geoenergy Science and Engineering. 2024. https://doi.org/10.1016/j.geoen.2024.213240.

1. M.A. Farahani, M.R. McCormick, R. Harik, T. Wuest. Time-series classification in smart manufacturing systems: An experimental evaluation of state-of-the-art machine learning algorithms. Robotics and Computer-Integrated Manufacturing. 2025. https://doi.org/10.1016/j.rcim.2024.102839.

1. D. Semwogerere, S. Sangesland, J. Vatn, A. Pavlov, D. Colombo. Well integrity and late life extension - A current industry state of practice and literature review. Geoenergy Science and Engineering. 2025. https://doi.org/10.1016/j.geoen.2024.213419.

0 comments on commit d6cbc26

Please sign in to comment.