Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

remove ppc and pco from inputdata generation #535

Merged
merged 9 commits into from
Sep 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .buildlibrary
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
ValidationKey: '37340160'
ValidationKey: '37361999'
AcceptedWarnings:
- 'Warning: package ''.*'' was built under R version'
- 'Warning: namespace ''.*'' is not available and has been replaced'
Expand Down
4 changes: 2 additions & 2 deletions CITATION.cff
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@ cff-version: 1.2.0
message: If you use this software, please cite it using the metadata from this file.
type: software
title: 'mrremind: MadRat REMIND Input Data Package'
version: 0.187.0
date-released: '2024-09-02'
version: 0.187.1
date-released: '2024-09-03'
abstract: The mrremind packages contains data preprocessing for the REMIND model.
authors:
- family-names: Baumstark
Expand Down
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
Type: Package
Package: mrremind
Title: MadRat REMIND Input Data Package
Version: 0.187.0
Date: 2024-09-02
Version: 0.187.1
Date: 2024-09-03
Authors@R: c(
person("Lavinia", "Baumstark", , "lavinia@pik-potsdam.de", role = c("aut", "cre")),
person("Renato", "Rodrigues", role = "aut"),
Expand Down
3 changes: 2 additions & 1 deletion R/calcCapacityFactor.R
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,8 @@ calcCapacityFactor <- function() {
global <- readSource("REMIND_11Regi", subtype = "capacityFactorGlobal", convert = FALSE)

# remove no longer used items
notUsed <- c("apcarelt", "aptrnelt", "apcarh2t", "apcarpet", "apcardit", "apcardiefft", "apcardieffH2t")
notUsed <- c("apcarelt", "aptrnelt", "apcarh2t", "apcarpet", "apcardit",
"apcardiefft", "apcardieffH2t", "pcc", "pco")
global <- global[, , notUsed, invert = TRUE]

# Set coal plant capacity factor long-term assumption to 50% (down from 60%)
Expand Down
67 changes: 35 additions & 32 deletions R/calcCoolingSharesAll.R
Original file line number Diff line number Diff line change
@@ -1,55 +1,58 @@
#' Calculate Cooling Type Shares
#'
#'
#' This function merges the output of two other functions that calculate REMIND
#' input data for the shares of cooling types per electricity technology and
#' REMIND region, using as initial information the Davies (2013) data per
#' electricity technology and GCAM region. The two other functions separately
#' calculate data for the base year and for future time steps. The source data
#' provide most required information but some assumptions on missing data are
#' also made.
#'
#'
#'
#'
#' @return MAgPIE object on cooling type shares per elecricity technology and
#' REMIND region
#' @author Ioanna Mouratiadou
#' @seealso \code{\link{calcOutput}}, \code{\link{readDaviesCooling}},
#' \code{\link{convertDaviesCooling}},
#' \code{\link{calcCoolingSharesBase}},\code{\link{calcCoolingSharesFuture}}
#' @examples
#'
#' \dontrun{
#'
#' \dontrun{
#'
#' a <- calcOutput("CoolingSharesAll")
#'
#' }
#'
#'
calcCoolingSharesAll <- function() {
cooloutputBase <- calcOutput("CoolingSharesBase", aggregate = FALSE)
cooloutputFuture <- calcOutput("CoolingSharesFuture", aggregate = FALSE)

cooloutputBase <- calcOutput("CoolingSharesBase", aggregate=FALSE)
cooloutputFuture <- calcOutput("CoolingSharesFuture",aggregate=FALSE)

# merge two datasets
outputAll <- mbind(cooloutputBase,cooloutputFuture)

#assign aggregation weight
weight <- dimSums(calcOutput("IO",subtype="output",aggregate=FALSE)[,2010,c("feelb","feeli")],dim=3)

#set weights to zero for countries that were not contained in the GCAM2ISO mapping
weight["ALA",,] <- 0
weight["ATA",,] <- 0
weight["BES",,] <- 0
weight["BLM",,] <- 0
weight["CUW",,] <- 0
weight["GGY",,] <- 0
weight["IMN",,] <- 0
weight["JEY",,] <- 0
weight["MAF",,] <- 0
weight["PSE",,] <- 0
weight["SSD",,] <- 0
weight["SXM",,] <- 0
outputAll <- mbind(cooloutputBase, cooloutputFuture)

return(list(x=outputAll, weight=weight,
unit="% of cooling type technologies",
description="Cooling shares for different cooling technologies based on Davies et al. (2013) publication and using electricity use weights (aggregated based on IEA World Energy Balances, 2014) for regional mapping"
# assign aggregation weight
weight <- dimSums(calcOutput("IO", subtype = "output", aggregate = FALSE)[, 2010, c("feelb", "feeli")], dim = 3)

# set weights to zero for countries that were not contained in the GCAM2ISO mapping
weight["ALA", , ] <- 0
weight["ATA", , ] <- 0
weight["BES", , ] <- 0
weight["BLM", , ] <- 0
weight["CUW", , ] <- 0
weight["GGY", , ] <- 0
weight["IMN", , ] <- 0
weight["JEY", , ] <- 0
weight["MAF", , ] <- 0
weight["PSE", , ] <- 0
weight["SSD", , ] <- 0
weight["SXM", , ] <- 0

return(list(
x = outputAll,
weight = weight,
unit = "% of cooling type technologies",
description = c(
"Cooling shares for different cooling technologies based on ",
"Davies et al. (2013) publication and using electricity use weights (aggregated ",
"based on IEA World Energy Balances, 2014) for regional mapping"
)
))
}
166 changes: 86 additions & 80 deletions R/calcCoolingSharesBase.R
Original file line number Diff line number Diff line change
@@ -1,118 +1,124 @@
#' Calculate Cooling Type Shares for the Base Year
#'
#'
#' This function calculates REMIND input data for the shares of cooling types
#' per electricity technology and REMIND region in 2005, using as initial
#' information the Davies (2013) data per electricity technology and GCAM
#' region. The source data provide most required information but some
#' assumptions on missing data are also made.
#'
#'
#'
#'
#' @return MAgPIE object on cooling type shares per elecricity technology and
#' REMIND region
#' @author Lavinia Baumstark, Ioanna Mouratiadou
#' @seealso \code{\link{calcOutput}}, \code{\link{readDaviesCooling}},
#' \code{\link{convertDaviesCooling}},
#' \code{\link{calcCoolingSharesAll}},\code{\link{calcCoolingSharesFuture}}
#' @examples
#'
#' \dontrun{
#' \dontrun{
#' a <- calcOutput("CoolingSharesBase")
#' }
#' @importFrom readxl read_excel



calcCoolingSharesBase <- function() {

# read in data
data <- readSource("DaviesCooling", subtype="dataBase")
getNames(data)[grepl("^Sea",getNames(data))] <- "Sea.NA"
data <- readSource("DaviesCooling", subtype = "dataBase")
getNames(data)[grepl("^Sea", getNames(data))] <- "Sea.NA"

# seperate data for Sea water
Sea <- data[,,"Sea"]
data <- data[,,-which(getNames(data)=="Sea.NA")]
id <- getNames(data,dim=1)
Sea <- data[, , "Sea"]
data <- data[, , -which(getNames(data) == "Sea.NA")]

id <- getNames(data, dim = 1)

# calculate pond
pond <- new.magpie(getRegions(data),getYears(data),id)
pond <- new.magpie(getRegions(data), getYears(data), id)
for (i in id) {
pond[,,i] <- 100 - dimSums(data[,,i],dim=3.2)
pond[, , i] <- 100 - dimSums(data[, , i], dim = 3.2)
}
getNames(pond) <- paste(getNames(pond),"Pond",sep=".")
getNames(pond) <- paste(getNames(pond), "Pond", sep = ".")

# add pond to data
data <- mbind(data,pond)
data <- mbind(data, pond)

# calculate sea water
sea_new <- new.magpie(getRegions(data),getYears(data),id)
sea_new <- new.magpie(getRegions(data), getYears(data), id)
for (i in id) {
sea_new[,,i] <- data[,,paste(i,"1-thru",sep=".")] * Sea/100
sea_new[, , i] <- data[, , paste(i, "1-thru", sep = ".")] * Sea / 100
}
getNames(sea_new) <- paste(getNames(sea_new),"Sea",sep=".")
getNames(sea_new) <- paste(getNames(sea_new), "Sea", sep = ".")

# correct 1-thru-data
data[,,"1-thru"] <- data[,,"1-thru"] * (1 - Sea/100)
data[, , "1-thru"] <- data[, , "1-thru"] * (1 - Sea / 100)
# add sea data to data
data <- mbind(data,sea_new)
data <- mbind(data, sea_new)

# check if all categories sum up to 100%
check <- new.magpie(getRegions(data),getYears(data),id)
check <- new.magpie(getRegions(data), getYears(data), id)
for (i in id) {
check[,,i] <- dimSums(data[,,i],dim=3.2)
check[, , i] <- dimSums(data[, , i], dim = 3.2)
}
if(!all(check==100)) { stop("sum of categorie XXX is not 100%")}

if (!all(check == 100)) {
stop("sum of categorie XXX is not 100%")
}

# read in mapping to REMIND technologies
map_table <- read_excel(toolGetMapping(type = "sectoral",
name = "TechnologyMappingDavies2REMIND.xlsx",
returnPathOnly = TRUE, where = "mappingfolder"))
map_table <- toolGetMapping(
type = "sectoral",
name = "techmappingDaviesToREMIND.csv",
where = "mrremind"
)
map <- list()
map$davies <- paste(map_table$'Davies Source/Technology',map_table$'Davies Cooling',sep=".")
map$remind <- paste(map_table$'REMIND Technology',map_table$'REMIND Cooling',sep=".")
map$davies <- paste(map_table$Davies.Source.Technology, map_table$Davies.Cooling, sep = ".")
map$remind <- paste(map_table$REMIND.Technology, map_table$REMIND.Cooling, sep = ".")

# calculate REMIND input in REMIND categories
output <- new.magpie(getRegions(data),getYears(data),map$remind)
output[,,] <- 0
for(d in 1:length(map$davies)){
if( !map$davies[d] == "-.-"){
output[,,map$remind[d]] <- data[,,map$davies[d]]
output <- new.magpie(getRegions(data), getYears(data), map$remind)
output[, , ] <- 0
for (d in 1:length(map$davies)) {
if (!map$davies[d] == "-.-") {
output[, , map$remind[d]] <- data[, , map$davies[d]]
}
}


# remove no longer used technologies pcc and pco
output <- output[, , c("pcc", "pco"), invert = TRUE]

# add assumed data
output[,,"geohdr.tower"] <- 70
output[,,"geohdr.dry"] <- 20
output[,,"geohdr.hybrid"] <- 10
output[,,"hydro.default"] <- 100
output[,,"wind.default"] <- 100
output[,,"spv.default"] <- 100
output[,,"csp.tower"] <- 70
output[,,"csp.dry"] <- 20
output[,,"csp.hybrid"] <- 10

outputBase <- new.magpie(getRegions(output),c(2005),getNames(output))
outputBase[,,] <- output[,,]

#assign aggregation weight
weight <- dimSums(calcOutput("IO",subtype="output",aggregate=FALSE)[,2010,c("feelb","feeli")],dim=3)

#set weights to zero for countries that were not contained in the GCAM2ISO mapping
weight["ALA",,] <- 0
weight["ATA",,] <- 0
weight["BES",,] <- 0
weight["BLM",,] <- 0
weight["CUW",,] <- 0
weight["GGY",,] <- 0
weight["IMN",,] <- 0
weight["JEY",,] <- 0
weight["MAF",,] <- 0
weight["PSE",,] <- 0
weight["SSD",,] <- 0
weight["SXM",,] <- 0

return(list(x=outputBase,weight=weight,
unit="% of cooling type technologies",
description="Cooling shares for different cooling technologies based on Davies et al. (2013) publication and using electricity use weights (aggregated based on IEA World Energy Balances, 2014) for regional mapping"
output[, , "geohdr.tower"] <- 70
output[, , "geohdr.dry"] <- 20
output[, , "geohdr.hybrid"] <- 10
output[, , "hydro.default"] <- 100
output[, , "wind.default"] <- 100
output[, , "spv.default"] <- 100
output[, , "csp.tower"] <- 70
output[, , "csp.dry"] <- 20
output[, , "csp.hybrid"] <- 10

outputBase <- new.magpie(getRegions(output), c(2005), getNames(output))
outputBase[, , ] <- output[, , ]

# assign aggregation weight
weight <- dimSums(calcOutput("IO", subtype = "output", aggregate = FALSE)[, 2010, c("feelb", "feeli")], dim = 3)

# set weights to zero for countries that were not contained in the GCAM2ISO mapping
weight["ALA", , ] <- 0
weight["ATA", , ] <- 0
weight["BES", , ] <- 0
weight["BLM", , ] <- 0
weight["CUW", , ] <- 0
weight["GGY", , ] <- 0
weight["IMN", , ] <- 0
weight["JEY", , ] <- 0
weight["MAF", , ] <- 0
weight["PSE", , ] <- 0
weight["SSD", , ] <- 0
weight["SXM", , ] <- 0

return(list(
x = outputBase, weight = weight,
unit = "% of cooling type technologies",
description = c(
"Cooling shares for different cooling technologies based on Davies et al. (2013) ",
"publication and using electricity use weights (aggregated based on IEA World ",
"Energy Balances, 2014) for regional mapping"
)
))
}
Loading
Loading