-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'staging/bilhetagem-fiscalizacao' of https://github.com/…
…prefeitura-rio/pipelines into staging/bilhetagem-fiscalizacao
- Loading branch information
Showing
6 changed files
with
541 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
240 changes: 240 additions & 0 deletions
240
pipelines/rj_cor/meteorologia/precipitacao_inea/flows.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,240 @@ | ||
# -*- coding: utf-8 -*- | ||
# pylint: disable=C0103 | ||
""" | ||
Flows for precipitacao_inea. | ||
""" | ||
from datetime import timedelta | ||
|
||
from prefect import case, Parameter | ||
from prefect.run_configs import KubernetesRun | ||
from prefect.storage import GCS | ||
from prefect.tasks.prefect import create_flow_run | ||
|
||
from pipelines.constants import constants | ||
from pipelines.utils.constants import constants as utils_constants | ||
from pipelines.utils.custom import wait_for_flow_run_with_timeout | ||
from pipelines.rj_cor.meteorologia.precipitacao_inea.tasks import ( | ||
check_for_new_stations, | ||
check_new_data, | ||
download_data, | ||
treat_data, | ||
save_data, | ||
wait_task, | ||
) | ||
from pipelines.rj_cor.meteorologia.precipitacao_inea.schedules import ( | ||
minute_schedule, | ||
) | ||
from pipelines.utils.decorators import Flow | ||
from pipelines.utils.dump_db.constants import constants as dump_db_constants | ||
from pipelines.utils.dump_to_gcs.constants import constants as dump_to_gcs_constants | ||
from pipelines.utils.tasks import ( | ||
create_table_and_upload_to_gcs, | ||
get_current_flow_labels, | ||
) | ||
|
||
wait_for_flow_run_with_2min_timeout = wait_for_flow_run_with_timeout( | ||
timeout=timedelta(minutes=2) | ||
) | ||
|
||
with Flow( | ||
name="COR: Meteorologia - Precipitacao e Fluviometria INEA", | ||
code_owners=[ | ||
"paty", | ||
], | ||
# skip_if_running=True, | ||
) as cor_meteorologia_precipitacao_inea: | ||
DUMP_MODE = Parameter("dump_mode", default="append", required=True) | ||
DATASET_ID_PLUVIOMETRIC = Parameter( | ||
"dataset_id_pluviometric", default="clima_pluviometro", required=True | ||
) | ||
TABLE_ID_PLUVIOMETRIC = Parameter( | ||
"table_id_pluviometric", default="taxa_precipitacao_inea", required=True | ||
) | ||
DATASET_ID_FLUVIOMETRIC = Parameter( | ||
"dataset_id_fluviometric", default="clima_fluviometro", required=True | ||
) | ||
TABLE_ID_FLUVIOMETRIC = Parameter( | ||
"table_id_fluviometric", default="lamina_agua_inea", required=True | ||
) | ||
|
||
# Materialization parameters | ||
MATERIALIZE_AFTER_DUMP = Parameter( | ||
"materialize_after_dump", default=True, required=False | ||
) | ||
MATERIALIZE_TO_DATARIO = Parameter( | ||
"materialize_to_datario", default=True, required=False | ||
) | ||
MATERIALIZATION_MODE = Parameter("mode", default="prod", required=False) | ||
|
||
# Dump to GCS after? Should only dump to GCS if materializing to datario | ||
DUMP_TO_GCS = Parameter("dump_to_gcs", default=False, required=False) | ||
|
||
MAXIMUM_BYTES_PROCESSED = Parameter( | ||
"maximum_bytes_processed", | ||
required=False, | ||
default=dump_to_gcs_constants.MAX_BYTES_PROCESSED_PER_TABLE.value, | ||
) | ||
|
||
dataframe = download_data() | ||
dfr_pluviometric, dfr_fluviometric = treat_data( | ||
dataframe=dataframe, | ||
dataset_id=DATASET_ID_PLUVIOMETRIC, | ||
table_id=TABLE_ID_PLUVIOMETRIC, | ||
mode=MATERIALIZATION_MODE, | ||
) | ||
new_pluviometric_data, new_fluviometric_data = check_new_data( | ||
dfr_pluviometric, dfr_fluviometric | ||
) | ||
|
||
with case(new_pluviometric_data, True): | ||
path_pluviometric = save_data( | ||
dataframe=dfr_pluviometric, folder_name="pluviometer" | ||
) | ||
|
||
# Create pluviometric table in BigQuery | ||
UPLOAD_TABLE_PLUVIOMETRIC = create_table_and_upload_to_gcs( | ||
data_path=path_pluviometric, | ||
dataset_id=DATASET_ID_PLUVIOMETRIC, | ||
table_id=TABLE_ID_PLUVIOMETRIC, | ||
dump_mode=DUMP_MODE, | ||
wait=path_pluviometric, | ||
) | ||
|
||
# Trigger pluviometric DBT flow run | ||
with case(MATERIALIZE_AFTER_DUMP, True): | ||
current_flow_labels = get_current_flow_labels() | ||
materialization_flow = create_flow_run( | ||
flow_name=utils_constants.FLOW_EXECUTE_DBT_MODEL_NAME.value, | ||
project_name=constants.PREFECT_DEFAULT_PROJECT.value, | ||
parameters={ | ||
"dataset_id": DATASET_ID_PLUVIOMETRIC, | ||
"table_id": TABLE_ID_PLUVIOMETRIC, | ||
"mode": MATERIALIZATION_MODE, | ||
"materialize_to_datario": MATERIALIZE_TO_DATARIO, | ||
}, | ||
labels=current_flow_labels, | ||
run_name=f"Materialize {DATASET_ID_PLUVIOMETRIC}.{TABLE_ID_PLUVIOMETRIC}", | ||
) | ||
|
||
materialization_flow.set_upstream(current_flow_labels) | ||
|
||
wait_for_materialization = wait_for_flow_run_with_2min_timeout( | ||
flow_run_id=materialization_flow, | ||
stream_states=True, | ||
stream_logs=True, | ||
raise_final_state=True, | ||
) | ||
wait_for_materialization.max_retries = ( | ||
dump_db_constants.WAIT_FOR_MATERIALIZATION_RETRY_ATTEMPTS.value | ||
) | ||
wait_for_materialization.retry_delay = timedelta( | ||
seconds=dump_db_constants.WAIT_FOR_MATERIALIZATION_RETRY_INTERVAL.value | ||
) | ||
|
||
with case(DUMP_TO_GCS, True): | ||
# Trigger Dump to GCS flow run with project id as datario | ||
dump_to_gcs_flow = create_flow_run( | ||
flow_name=utils_constants.FLOW_DUMP_TO_GCS_NAME.value, | ||
project_name=constants.PREFECT_DEFAULT_PROJECT.value, | ||
parameters={ | ||
"project_id": "datario", | ||
"dataset_id": DATASET_ID_PLUVIOMETRIC, | ||
"table_id": TABLE_ID_PLUVIOMETRIC, | ||
"maximum_bytes_processed": MAXIMUM_BYTES_PROCESSED, | ||
}, | ||
labels=[ | ||
"datario", | ||
], | ||
run_name=f"Dump to GCS {DATASET_ID_PLUVIOMETRIC}.{TABLE_ID_PLUVIOMETRIC}", | ||
) | ||
dump_to_gcs_flow.set_upstream(wait_for_materialization) | ||
|
||
wait_for_dump_to_gcs = wait_for_flow_run_with_2min_timeout( | ||
flow_run_id=dump_to_gcs_flow, | ||
stream_states=True, | ||
stream_logs=True, | ||
raise_final_state=True, | ||
) | ||
|
||
status = wait_task() | ||
status.set_upstream(UPLOAD_TABLE_PLUVIOMETRIC) | ||
with case(new_fluviometric_data, True): | ||
path_fluviometric = save_data( | ||
dataframe=dfr_fluviometric, folder_name="fluviometer" | ||
) | ||
path_fluviometric.set_upstream(status) | ||
|
||
# Create fluviometric table in BigQuery | ||
UPLOAD_TABLE_FLUVIOMETRIC = create_table_and_upload_to_gcs( | ||
data_path=path_fluviometric, | ||
dataset_id=DATASET_ID_FLUVIOMETRIC, | ||
table_id=TABLE_ID_FLUVIOMETRIC, | ||
dump_mode=DUMP_MODE, | ||
wait=path_fluviometric, | ||
) | ||
|
||
# Trigger DBT flow run | ||
with case(MATERIALIZE_AFTER_DUMP, True): | ||
current_flow_labels = get_current_flow_labels() | ||
materialization_flow = create_flow_run( | ||
flow_name=utils_constants.FLOW_EXECUTE_DBT_MODEL_NAME.value, | ||
project_name=constants.PREFECT_DEFAULT_PROJECT.value, | ||
parameters={ | ||
"dataset_id": DATASET_ID_FLUVIOMETRIC, | ||
"table_id": TABLE_ID_FLUVIOMETRIC, | ||
"mode": MATERIALIZATION_MODE, | ||
"materialize_to_datario": MATERIALIZE_TO_DATARIO, | ||
}, | ||
labels=current_flow_labels, | ||
run_name=f"Materialize {DATASET_ID_FLUVIOMETRIC}.{TABLE_ID_FLUVIOMETRIC}", | ||
) | ||
|
||
materialization_flow.set_upstream(current_flow_labels) | ||
|
||
wait_for_materialization = wait_for_flow_run_with_2min_timeout( | ||
flow_run_id=materialization_flow, | ||
stream_states=True, | ||
stream_logs=True, | ||
raise_final_state=True, | ||
) | ||
wait_for_materialization.max_retries = ( | ||
dump_db_constants.WAIT_FOR_MATERIALIZATION_RETRY_ATTEMPTS.value | ||
) | ||
wait_for_materialization.retry_delay = timedelta( | ||
seconds=dump_db_constants.WAIT_FOR_MATERIALIZATION_RETRY_INTERVAL.value | ||
) | ||
|
||
with case(DUMP_TO_GCS, True): | ||
# Trigger Dump to GCS flow run with project id as datario | ||
dump_to_gcs_flow = create_flow_run( | ||
flow_name=utils_constants.FLOW_DUMP_TO_GCS_NAME.value, | ||
project_name=constants.PREFECT_DEFAULT_PROJECT.value, | ||
parameters={ | ||
"project_id": "datario", | ||
"dataset_id": DATASET_ID_FLUVIOMETRIC, | ||
"table_id": TABLE_ID_FLUVIOMETRIC, | ||
"maximum_bytes_processed": MAXIMUM_BYTES_PROCESSED, | ||
}, | ||
labels=[ | ||
"datario", | ||
], | ||
run_name=f"Dump to GCS {DATASET_ID_FLUVIOMETRIC}.{TABLE_ID_FLUVIOMETRIC}", | ||
) | ||
dump_to_gcs_flow.set_upstream(wait_for_materialization) | ||
|
||
wait_for_dump_to_gcs = wait_for_flow_run_with_2min_timeout( | ||
flow_run_id=dump_to_gcs_flow, | ||
stream_states=True, | ||
stream_logs=True, | ||
raise_final_state=True, | ||
) | ||
|
||
check_for_new_stations(dataframe, wait=UPLOAD_TABLE_PLUVIOMETRIC) | ||
|
||
# para rodar na cloud | ||
cor_meteorologia_precipitacao_inea.storage = GCS(constants.GCS_FLOWS_BUCKET.value) | ||
cor_meteorologia_precipitacao_inea.run_config = KubernetesRun( | ||
image=constants.DOCKER_IMAGE.value, | ||
labels=[constants.RJ_COR_AGENT_LABEL.value], | ||
) | ||
cor_meteorologia_precipitacao_inea.schedule = minute_schedule |
34 changes: 34 additions & 0 deletions
34
pipelines/rj_cor/meteorologia/precipitacao_inea/schedules.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
# -*- coding: utf-8 -*- | ||
# pylint: disable=C0103 | ||
""" | ||
Schedules for precipitacao_inea | ||
Rodar a cada 1 minuto | ||
""" | ||
from datetime import timedelta, datetime | ||
from prefect.schedules import Schedule | ||
from prefect.schedules.clocks import IntervalClock | ||
from pipelines.constants import constants | ||
|
||
minute_schedule = Schedule( | ||
clocks=[ | ||
IntervalClock( | ||
interval=timedelta(minutes=5), | ||
start_date=datetime(2023, 1, 1, 0, 1, 0), | ||
labels=[ | ||
constants.RJ_COR_AGENT_LABEL.value, | ||
], | ||
parameter_defaults={ | ||
# "trigger_rain_dashboard_update": True, | ||
"materialize_after_dump": True, | ||
"mode": "prod", | ||
"materialize_to_datario": True, | ||
"dump_to_gcs": False, | ||
"dump_mode": "append", | ||
"dataset_id_pluviometric": "clima_pluviometro", | ||
"table_id_pluviometric": "taxa_precipitacao_inea", | ||
"dataset_id_fluviometric": "clima_fluviometro", | ||
"table_id_fluviometric": "lamina_agua_inea", | ||
}, | ||
), | ||
] | ||
) |
Oops, something went wrong.