-
Notifications
You must be signed in to change notification settings - Fork 127
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
### Summary This PR modifies `ScatterTable` which is introduced in #1253. This change resolves some code issues in #1315 and #1243. ### Details and comments In the original design `ScatterTable` is tied to the fit models, and the columns contains `model_name` (str) and `model_id` (int). Also the fit module only allows to have three categorical data; "processed", "formatted", "fitted". However, #1243 breaks this assumption, namely, the `StarkRamseyXYAmpScanAnalysis` fitter defines two fit models which are not directly mapped to the results data. The data fed into the models is synthesized by consuming the input results data. The fitter needs to manage four categorical data; "raw", "ramsey" (raw results), "phase" (synthesized data for fit), and "fitted". This PR relaxes the tight coupling of data to the fit model. In above example, "raw" and "ramsey" category data can fill new fields `name` (formally model_name) and `class_id` (model_id) without indicating a particular fit model. Usually, raw category data is just classified according to the `data_subfit_map` definition, and the map doesn't need to match with the fit models. The connection to fit models is only introduced in a particular category defined by new option value `fit_category`. This option defaults to "formatted", but `StarkRamseyXYAmpScanAnalysis` fitter would set "phase" instead. Thus fit model assignment is effectively delayed until the formatter function. Also the original scatter table is designed to store all circuit metadata which causes some problem in data formatting, especially when it tries to average the data over the same x value in the group. Non-numeric data is averaged by builtin set operation, but this assumes the metadata value is hashable object, which is not generally true. This PR also drops all metadata from the scatter table. Note that important metadata fields for the curve analysis are one used for model classification (classifier fields), and other fields just decorate the table with unnecessary memory footprint requirements. The classifier fields and `name` (`class_id`) are sort of duplicated information. This implies the `name` and `class_id` fields are enough for end-users to reuse the table data for further analysis once after it's saved as an artifact. --------- Co-authored-by: Will Shanks <willshanks@us.ibm.com>
- Loading branch information
1 parent
726f422
commit 5bb1fb4
Showing
9 changed files
with
230 additions
and
198 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.