Skip to content

Commit

Permalink
Create ChoiState type and conversions to/from SuperOperator (#115)
Browse files Browse the repository at this point in the history

Co-authored-by: Stefan Krastanov <github.acc@krastanov.org>
  • Loading branch information
akirakyle and Krastanov authored Nov 17, 2024
1 parent d6aadeb commit 2b6763b
Show file tree
Hide file tree
Showing 4 changed files with 103 additions and 4 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "QuantumOpticsBase"
uuid = "4f57444f-1401-5e15-980d-4471b28d5678"
version = "0.5.3"
version = "0.5.4"

[deps]
Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
Expand Down
63 changes: 61 additions & 2 deletions src/superoperators.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,9 @@ mutable struct SuperOperator{B1,B2,T} <: AbstractSuperOperator{B1,B2}
basis_r::B2
data::T
function SuperOperator{BL,BR,T}(basis_l::BL, basis_r::BR, data::T) where {BL,BR,T}
if length(basis_l[1])*length(basis_l[2]) != size(data, 1) ||
length(basis_r[1])*length(basis_r[2]) != size(data, 2)
if (length(basis_l) != 2 || length(basis_r) != 2 ||
length(basis_l[1])*length(basis_l[2]) != size(data, 1) ||
length(basis_r[1])*length(basis_r[2]) != size(data, 2))
throw(DimensionMismatch("Tried to assign data of size $(size(data)) to Hilbert spaces of sizes $(length.(basis_l)), $(length.(basis_r))"))
end
new(basis_l, basis_r, data)
Expand Down Expand Up @@ -316,3 +317,61 @@ end
}
throw(IncompatibleBases())
end

"""
ChoiState <: AbstractSuperOperator
Superoperator represented as a choi state.
"""
mutable struct ChoiState{B1,B2,T} <: AbstractSuperOperator{B1,B2}
basis_l::B1
basis_r::B2
data::T
function ChoiState{BL,BR,T}(basis_l::BL, basis_r::BR, data::T) where {BL,BR,T}
if (length(basis_l) != 2 || length(basis_r) != 2 ||
length(basis_l[1])*length(basis_l[2]) != size(data, 1) ||
length(basis_r[1])*length(basis_r[2]) != size(data, 2))
throw(DimensionMismatch("Tried to assign data of size $(size(data)) to Hilbert spaces of sizes $(length.(basis_l)), $(length.(basis_r))"))
end
new(basis_l, basis_r, data)
end
end
ChoiState(b1::BL, b2::BR, data::T) where {BL,BR,T} = ChoiState{BL,BR,T}(b1, b2, data)

dense(a::ChoiState) = ChoiState(a.basis_l, a.basis_r, Matrix(a.data))
sparse(a::ChoiState) = ChoiState(a.basis_l, a.basis_r, sparse(a.data))
dagger(a::ChoiState) = ChoiState(dagger(SuperOperator(a)))
*(a::ChoiState, b::ChoiState) = ChoiState(SuperOperator(a)*SuperOperator(b))
*(a::ChoiState, b::Operator) = SuperOperator(a)*b
==(a::ChoiState, b::ChoiState) = (SuperOperator(a) == SuperOperator(b))

# reshape swaps within systems due to colum major ordering
# https://docs.qojulia.org/quantumobjects/operators/#tensor_order
function _super_choi((l1, l2), (r1, r2), data)
data = reshape(data, map(length, (l2, l1, r2, r1)))
(l1, l2), (r1, r2) = (r2, l2), (r1, l1)
data = permutedims(data, (1, 3, 2, 4))
data = reshape(data, map(length, (l1l2, r1r2)))
return (l1, l2), (r1, r2), data
end

function _super_choi((r2, l2), (r1, l1), data::SparseMatrixCSC)
data = _permutedims(data, map(length, (l2, r2, l1, r1)), (1, 3, 2, 4))
data = reshape(data, map(length, (l1l2, r1r2)))
# sparse(data) is necessary since reshape of a sparse array returns a
# ReshapedSparseArray which is not a subtype of AbstractArray and so
# _permutedims fails to acces the ".m" field
# https://github.com/qojulia/QuantumOpticsBase.jl/pull/83
# https://github.com/JuliaSparse/SparseArrays.jl/issues/24
# permutedims in SparseArrays.jl only implements perm (2,1) and so
# _permutedims should probably be upstreamed
# https://github.com/JuliaLang/julia/issues/26534
return (l1, l2), (r1, r2), sparse(data)
end

ChoiState(op::SuperOperator) = ChoiState(_super_choi(op.basis_l, op.basis_r, op.data)...)
SuperOperator(op::ChoiState) = SuperOperator(_super_choi(op.basis_l, op.basis_r, op.data)...)

*(a::ChoiState, b::SuperOperator) = SuperOperator(a)*b
*(a::SuperOperator, b::ChoiState) = a*SuperOperator(b)

36 changes: 36 additions & 0 deletions test/test_superoperators.jl
Original file line number Diff line number Diff line change
@@ -1,13 +1,15 @@
using Test
using QuantumOpticsBase
using SparseArrays, LinearAlgebra
import QuantumOpticsBase: ChoiState # Remove when ChoiState is publicly exported

@testset "superoperators" begin

# Test creation
b = GenericBasis(3)
@test_throws DimensionMismatch DenseSuperOperator((b, b), (b, b), zeros(ComplexF64, 3, 3))
@test_throws DimensionMismatch SparseSuperOperator((b, b), (b, b), spzeros(ComplexF64, 3, 3))
@test_throws DimensionMismatch ChoiState((b, b), (b, b), zeros(ComplexF64, 3, 3))

# Test copy, sparse and dense
b1 = GenericBasis(2)
Expand Down Expand Up @@ -153,29 +155,45 @@ J = [Ja, Jc]
ρ₀ = dm(Ψ₀)

@test identitysuperoperator(spinbasis)*sx == sx
@test ChoiState(identitysuperoperator(spinbasis))*sx == sx
@test identitysuperoperator(sparse(spre(sx)))*sx == sparse(sx)
@test ChoiState(identitysuperoperator(sparse(spre(sx))))*sx == sparse(sx)
@test sparse(ChoiState(identitysuperoperator(spre(sx))))*sx == sparse(sx)
@test identitysuperoperator(dense(spre(sx)))*sx == dense(sx)
@test ChoiState(identitysuperoperator(dense(spre(sx))))*sx == dense(sx)
@test dense(ChoiState(identitysuperoperator(spre(sx))))*sx == dense(sx)

op1 = DenseOperator(spinbasis, [1.2+0.3im 0.7+1.2im;0.3+0.1im 0.8+3.2im])
op2 = DenseOperator(spinbasis, [0.2+0.1im 0.1+2.3im; 0.8+4.0im 0.3+1.4im])
@test tracedistance(spre(op1)*op2, op1*op2) < 1e-12
@test tracedistance(ChoiState(spre(op1))*op2, op1*op2) < 1e-12
@test tracedistance(spost(op1)*op2, op2*op1) < 1e-12
@test tracedistance(ChoiState(spost(op1))*op2, op2*op1) < 1e-12

@test spre(sparse(op1))*op2 == op1*op2
@test ChoiState(spre(sparse(op1)))*op2 == op1*op2
@test spost(sparse(op1))*op2 == op2*op1
@test ChoiState(spost(sparse(op1)))*op2 == op2*op1
@test spre(sparse(dagger(op1)))*op2 == dagger(op1)*op2
@test ChoiState(spre(sparse(dagger(op1))))*op2 == dagger(op1)*op2
@test spre(dense(dagger(op1)))*op2 dagger(op1)*op2
@test ChoiState(spre(dense(dagger(op1))))*op2 dagger(op1)*op2
@test sprepost(sparse(op1), op1)*op2 op1*op2*op1
@test ChoiState(sprepost(sparse(op1), op1))*op2 op1*op2*op1

@test spre(sparse(op1))*sparse(op2) == sparse(op1*op2)
@test ChoiState(spre(sparse(op1)))*sparse(op2) == sparse(op1*op2)
@test spost(sparse(op1))*sparse(op2) == sparse(op2*op1)
@test ChoiState(spost(sparse(op1)))*sparse(op2) == sparse(op2*op1)
@test sprepost(sparse(op1), sparse(op1))*sparse(op2) sparse(op1*op2*op1)
@test ChoiState(sprepost(sparse(op1), sparse(op1)))*sparse(op2) sparse(op1*op2*op1)

@test sprepost(op1, op2) spre(op1)*spost(op2)
b1 = FockBasis(1)
b2 = FockBasis(5)
op = fockstate(b1, 0) dagger(fockstate(b2, 0))
@test sprepost(dagger(op), op)*dm(fockstate(b1, 0)) == dm(fockstate(b2, 0))
@test ChoiState(sprepost(dagger(op), op))*dm(fockstate(b1, 0)) == dm(fockstate(b2, 0))
@test_throws ArgumentError spre(op)
@test_throws ArgumentError spost(op)

Expand All @@ -185,12 +203,14 @@ for j=J
ρ .+= j*ρ₀*dagger(j) - 0.5*dagger(j)*j*ρ₀ - 0.5*ρ₀*dagger(j)*j
end
@test tracedistance(L*ρ₀, ρ) < 1e-10
@test tracedistance(ChoiState(L)*ρ₀, ρ) < 1e-10

# tout, ρt = timeevolution.master([0.,1.], ρ₀, H, J; reltol=1e-7)
# @test tracedistance(exp(dense(L))*ρ₀, ρt[end]) < 1e-6
# @test tracedistance(exp(sparse(L))*ρ₀, ρt[end]) < 1e-6

@test dense(spre(op1)) == spre(op1)
@test dense(ChoiState(spre(op1))) == ChoiState(spre(op1))

@test L/2.0 == 0.5*L == L*0.5
@test -L == SparseSuperOperator(L.basis_l, L.basis_r, -L.data)
Expand Down Expand Up @@ -228,4 +248,20 @@ N = exp(log(2) * sparse(L)) # 50% loss channel
@test (0.5 - real(tr^2))) < 1e-10 # one photon state becomes maximally mixed
@test tracedistance(ρ, normalize(dm(fockstate(b, 0)) + dm(fockstate(b, 1)))) < 1e-10

# Testing 0-2-4 binomial code encoder
b_logical = SpinBasis(1//2)
b_fock = FockBasis(5)
z_l = normalize(fockstate(b_fock, 0) + fockstate(b_fock, 4))
o_l = fockstate(b_fock, 2)
encoder_kraus = z_l dagger(spinup(b_logical)) + o_l dagger(spindown(b_logical))
encoder_sup = sprepost(encoder_kraus, dagger(encoder_kraus))
decoder_sup = sprepost(dagger(encoder_kraus), encoder_kraus)
@test SuperOperator(ChoiState(encoder_sup)).data == encoder_sup.data
@test decoder_sup == dagger(encoder_sup)
@test ChoiState(decoder_sup) == dagger(ChoiState(encoder_sup))
@test decoder_sup*encoder_sup dense(identitysuperoperator(b_logical))
@test decoder_sup*ChoiState(encoder_sup) dense(identitysuperoperator(b_logical))
@test ChoiState(decoder_sup)*encoder_sup dense(identitysuperoperator(b_logical))
@test SuperOperator(ChoiState(decoder_sup)*ChoiState(encoder_sup)) dense(identitysuperoperator(b_logical))

end # testset
6 changes: 5 additions & 1 deletion test/test_time_dependent_operators.jl
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,11 @@ using LinearAlgebra, Random
o_t_tup = TimeDependentSum(Tuple, o_t)
@test QOB.static_operator(o_t_tup(t)).factors == [1.0im, t*3.0 + 0.0im]
@test all(QOB.static_operator(o_t_tup(t)).operators .== (a, n))
@test (@allocated set_time!(o_t_tup, t)) == 0
if VERSION.minor == 11 # issue #178 https://github.com/qojulia/QuantumOpticsBase.jl/issues/178
@test_broken (@allocated set_time!(o_t_tup, t)) == 0
else
@test (@allocated set_time!(o_t_tup, t)) == 0
end

o_t2 = TimeDependentSum(f1=>a, f2=>n)
@test o_t(t) == o_t2(t)
Expand Down

2 comments on commit 2b6763b

@Krastanov
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/119602

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.5.4 -m "<description of version>" 2b6763bcda97002cbdd6e3cd9109aff5013b1145
git push origin v0.5.4

Please sign in to comment.