This repository contains the accompanying implementation for the UAI paper "Iterated INLA for State and Parameter Estimation in Nonlinear Dynamical Systems".
- NumPy
- SciPy
- Matplotlib
- scikit-learn
- scikit-sparse fork with Takahashi equations
- findiff fork with periodic boundary conditions
This Python module depends on the suite-sparse library, which can be installed with your package manager of choice. For example, with conda
we can install suite-sparse via:
# Install suite-sparse with conda
conda install -c conda-forge suitesparse
We also need custom forks of the scikit-sparse
and findiff
packages, which can be installed via:
# Install scikit-sparse fork
git clone https://github.com/rafaelanderka/scikit-sparse.git
pip install ./scikit-sparse
and
# Install findiff fork
git clone https://github.com/rafaelanderka/findiff.git
pip install ./findiff
Finally, we can install iter-inla
with
# Install iter-inla
git clone https://github.com/rafaelanderka/iter-inla.git
pip install ./iter-inla
The module can then be imported in Python as iinla
.
To get started, please have a look at the demos
directory, which provides examples with live preview plots.
If you found this useful, please consider citing:
@article{anderka2024iterated,
title={Iterated {INLA} for State and Parameter Estimation in Nonlinear Dynamical Systems},
author={Anderka, Rafael and Deisenroth, Marc Peter and Takao, So},
journal={Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence},
year={2024},
publisher={PMLR}
}
MIT