In this project we develop an analysis over the house prices. We make a basic EDA to undertand the data. After that we use 3 different linear regression models to try to predict the results.
You should check the EDA and the Model Jupyter notebook to understand the data.
ERROR PREDICTIONS
MAE 1890091.6085735606
MSE 52837100282241.73
RMSE 7268913.280693457
R2 0.7911340192783549
ERROR PREDICTIONS
MAE 994575.8051471912
MSE 168991930773220.47
RMSE 12999689.641419156
R2 0.3319719445910607
ERROR PREDICTIONS
MAE 1381841.2284836913
MSE 36933593916162.945
RMSE 6077301.532437151
R2 0.8540008578505007
ERROR PREDICTIONS
MAE 1267626.8885942616
MSE 122856752785652.98
RMSE 11084076.541852865
R2 0.5143451093686058
-
Alejandro Rodríguez
-
Roger Mesén
-
Coralia Arguedas
-
Luis Rodolfo Valverde Delgado