Skip to content

robertschnitman/diagnoserjl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

86 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

diagnoserjl

Robert Schnitman
2018-03-16
Recommended Citation:
       Schnitman, Robert (2018). diagnoserjl v0.0.1.0. https://github.com/robertschnitman/diagnoserjl

Outline

  1. Installation (under construction)
  2. Introduction
  3. diagnose()
  4. fitres()
  5. modeldf()
  6. validate()
  7. Conclusion
  8. References

0. Installation

# Julia ≥ 0.6.2.
# Package imports
#   DataFrames ≥ 0.10.1
#   GLM        ≥ 0.8.1
#   Plots      ≥ 0.15.1
  
Pkg.clone("https://github.com/robertschnitman/diagnoserjl.git")

1. Introduction

Based on the original R library, diagnoser (https://github.com/robertschnitman/diagnoser).

Motivation: make an equivalent package for Julia for pedagogical purposes and to take advantage of its capabilities.

Tables in the sections below were created with a Markdown table converter (Donat Studios 2017).

2. diagnose()

file = "stata_auto.csv"
auto = readtable(file)

model_lm = fit(LinearModel, @formula(price ~ mpg + weight), auto)

diagnose(model_lm)

3. modeldf()

modeldf(model_lm, 0.95) # default confidence interval is 0.95.
Row terms beta se moe ci_lower ci_upper t p
1 (Intercept) 1946.07 3597.05 7172.31 -5226.24 9118.38 0.541018 0.5902
2 mpg -49.5122 86.156 171.79 -221.302 122.278 -0.574681 0.5673
3 weight 1.74656 0.641354 1.27882 0.467736 3.02538 2.72324 0.0081

4. fitres()

fitres(model_lm) # Outputs a dataframe: fitted values, residuals, and residuals %.
Row fit residual residual_pct
1 5974.22 -1875.22 -0.457482
2 6955.33 -2206.33 -0.464589
3 5467.72 -1668.72 -0.439251
4 6632.14 -1816.14 -0.377106
5 8329.35 -502.347 -0.0641813
6 7464.72 -1676.72 -0.289689
7 4553.58 -100.578 -0.0225865
8 6684.54 -1495.54 -0.288213
9 7930.52 2441.48 0.235391
10 6943.64 -2861.64 -0.701038
11 8815.5 2569.5 0.225692
…
63 3918.89 76.1108 0.0190515
64 7226.13 5763.87 0.443716
65 3854.95 40.0458 0.0102813
66 3793.59 4.41278 0.00116187
67 5264.06 634.944 0.107636
68 4253.62 -505.62 -0.134904
69 5718.16 0.838351 0.000146591
70 4579.86 2560.14 0.358564
71 3479.05 1917.95 0.355374
72 4079.12 617.878 0.131547
73 4183.92 2666.08 0.389209
74 6640.95 5354.05 0.446357
fr = fitres(model_lm, auto) # If the original dataset from the model is specified,
                            #   then the fitted values & residuals are merged with it.
                            
fr[1:10, [:price, :mpg, :weight, :fit, :residual, :residual_pct]]
Row price mpg weight fit residual residual_pct
1 4099 22 2930 5974.22 -1875.22 -0.457482
2 4749 17 3350 6955.33 -2206.33 -0.464589
3 3799 22 2640 5467.72 -1668.72 -0.439251
4 4816 20 3250 6632.14 -1816.14 -0.377106
5 7827 15 4080 8329.35 -502.347 -0.0641813
6 5788 18 3670 7464.72 -1676.72 -0.289689
7 4453 26 2230 4553.58 -100.578 -0.0225865
8 5189 20 3280 6684.54 -1495.54 -0.288213
9 10372 16 3880 7930.52 2441.48 0.235391
10 4082 19 3400 6943.64 -2861.64 -0.701038

5. validate()

Case 1: OLS

validate(model_lm, false) # By default, the output (dataframe = false) returns an array. 
                          # Set to "true" for a dataframe.
                          # See help documentation (?validate) for statistics definitions.
:n [74.0]
:ar2 [0.273485]
:r2 [0.293389]
:rmse [2462.54]
:mad [1389.76]
:mae [1966.89]
:medianpe [-0.105916]
:mpe [-0.11274]
:sdpe [0.358649]
:sepe [0.041692]
:residual_mean [-0.0]
:residual_median [-503.983]
:residual_sd [2479.35]
:residual_se [288.219]

Case 2: GLM (logit)

testf = function(x)      # Setting up a binary variable for a logistic regression.
    if (x == "Domestic")
		0
    else
		1
    end
end

auto[:foreign2] = testf.(auto[:foreign])
model_glm = fit(GeneralizedLinearModel, @formula(foreign2 ~ mpg + weight), auto, Binomial())

validate(model_glm, true) # dataframe = true --> outputs dataframe
Row statistic value
1 n [74.0]
2 deviance_residual [54.3503]
3 aer [0.013514]

6. Conclusion

The hope of this library is to (1) minimize the programming tedium in statistical reporting; (2) assist people in diagnosing the validity of their results; and (3) inspire developers and end-users alike to apply Julia in their work.

7. References

Schnitman, Robert (2017). diagnoser v0.0.2.5. https://github.com/robertschnitman/diagnoser

Donat Studios (2017). CSV To Markdown Table Generator. https://donatstudios.com/CsvToMarkdownTable

End of Document