Skip to content

Kotlin/JVM compensated summation of Double sequences to calculate sum, mean, standard deviation

License

Notifications You must be signed in to change notification settings

rtmigo/precise_kt

Repository files navigation

Generic badge Maven Central

Implements compensated summation for sequences of Double. Reduces rounding errors associated with limited precision of floating-point numbers.

val numbers = List(420) { 0.1 }  // 420 x 0.01

numbers.preciseSumOf { it } // 42.0 (compensated sum)
numbers.sumOf { it }        // 42.00000000000033 (naive sum)

The table shows the total error when summing the same sequence of random numbers. All the terms were rounded to 0.0001 before addition. In the % column, the error of preciseSumOf compared to sumOf.

Terms err( sum ) err( preciseSum ) %
10 0.00000000003 0.00000000003 100.0%
100 0.0000000008 0.00000000002 3.03%
1,000 0.000000001 0.0000000001 9.57%
10,000 0.00000002 0.0000000007 3.57%
100,000 0.0000005 0.000000004 0.77%
1,000,000 0.000009 0.000000003 0.03%

% is err(preciseSum) / err(sum)

Most of the functions use "second-order iterative Kahan–Babuška algorithm" by Klein (2005) .

Install Maven Central

// build.gradle.kts

dependencies {
    implementation("io.github.rtmigo:precise:X.X.X")
    // replace X.X.X with actual version
}

Find the latest version and instructions for other build systems at Maven Central.

Lambda functions

val sequence = listOf(1, 2, 3)

// sum
sequence.preciseSumOf { it * 0.1 }  // equals 0.6

// arithmetic mean
sequence.preciseMeanOf { it * 0.1 }  // equals 0.2

// standard deviation and mean
val (stdev, mean) = sequence.preciseStdevMean { it * 0.1 }

Running sum

Running sum, immutable version:

var sum = PreciseSum(5.0)  // 5.0 is optional starting value

sum += 0.1
sum += listOf(0.2, 0.3)
println(sum.value)  // 5.6

sum -= 0.2
println(sum.value)  // 5.4

Running sum, mutable version (faster):

val sum = MutablePreciseSum(5.0)  // 5.0 is optional starting value

sum.add(0.1)
sum.add(listOf(0.2, 0.3))
println(sum.value)  // 5.6

sum.add(-0.2)
println(sum.value)  // 5.4

Benchmarks

An alternative to compensated summation is to use BigDecimal: there is no error when summing them. However, even in the case of a pre-generated array, BigDecimals are 5-10 times slower.

Type Method Kind Time
Double List<Double>.sumOf naive 17 ms
Double List<Double>.preciseSumOf precise 48 ms
Double MutablePreciseSum precise 50 ms
Double PreciseSum (immutable) precise 75 ms
BigDecimal List<BigDecimal>.sumOf naive 501 ms
BigDecimal List<Double>.sumOf { it.toBigDecimal() } naive 3192 ms

Other functions

kahanSumOf implements Kahan compensated summation algorithm in its traditional form. The accuracy is worse than preciseSumOf, but better than the naive sum.

val sequence = listOf(1, 2, 3)
sequence.kahanSumOf { it * 0.1 }  // 0.6

cascadeSumOf performs pairwise summation. The accuracy is worse than preciseSumOf, but better than the naive sum.

val sequence = listOf(1, 2, 3)
sequence.cascadeSumOf { it * 0.1 }  // 0.6

welfordMeanOf calculates the arithmetic mean, avoiding overflow when summing too large values.

val sequence = listOf(1, 2, 3)
println(sequence.welfordMeanOf { it * 0.1 })  // 0.3

License

Copyright © 2022 Artsiom iG. Released under the MIT License.