Skip to content

ryuichi0704/workshop_noise_handling

Repository files navigation

Slide

https://www.slideshare.net/RyuichiKanoh/practical-tips-for-handling-noisy-data-and-annotaiton-204195412

Experiment Overview

  • Image classification with 340 labels.
  • Evaluation metric is top-1 accuracy.
  • QuickDraw dataset (Link) is used.
    • Timestamped vectors are converted to 1ch images with 32x32 resolution.
    • Dataset is randomly subsampled.

Setup

  • You need to modify ./invoke.yaml and ./project/work/settings.yaml.
  • For using spreadsheet api, you need to put credential json in ./project/work/reporter/*.json. (Reference)

Local requirements

  • docker (with GPU support)
  • invoke

Commands

Almost all commands are executed by invoke (http://www.pyinvoke.org/). Command details are defined in tasks.py.

---Local---

Build docker image

inv build-local

Start container

inv run-local

Attach

inv attach-local

Stop

inv stop-local

For removing unused container or image, use docker container prune docker image prune

---AI Platform Training---

push to gcr

inv push-remote

train

inv train-ai-platform --batch-size 128 --learning-rate 1e-2

---Others---

prepare input dataset from original kaggle dataset

cd project/data_preparation
python quickdraw.py

You need to put kaggle original dataset in quickdraw_original folder.

data_preparation
├── quickdraw.py
└── quickdraw_original
    ├── sample_submission.csv
    ├── test_raw.csv
    ├── test_simplified.csv
    ├── train_raw [340 entries]
    └── train_simplified [340 entries]

Overview

.
├── README.md
├── ai_platform.py
├── fig
│   ├── env.png
│   └── image_sample.png
├── image
│   ├── local
│   │   └── Dockerfile
│   └── remote
│       └── Dockerfile
├── invoke.yaml
├── make_command.py
├── project
│   ├── data_preparation
│   │   ├── quickdraw.py
│   │   └── quickdraw_original
│   ├── input
│   │   └── quickdraw
│   │       ├── label_name.csv
│   │       ├── test_images.pkl.gz
│   │       ├── test_labels.pkl.gz
│   │       ├── train_images.pkl.gz
│   │       └── train_labels.pkl.gz
│   ├── notebook
│   ├── output
│   └── work
│       ├── common.py
│       ├── dataset
│       │   ├── base_dataset.py
│       │   └── distillation_dataset.py
│       ├── main.py
│       ├── model.py
│       ├── reporter
│       │   ├── put_credential_json_here.txt
│       │   └── reporter.py
│       ├── runner
│       │   ├── base_runner.py
│       │   ├── distillation_runner.py
│       │   └── mixup_runner.py
│       └── settings.yaml
├── requirements.txt
└── tasks.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published