Note: may take a while the first time.
git clone https://github.com/nickdelgrosso/crab_pipeline
cd crab_pipeline
module load miniconda
conda env create -n snakemake envs/snakemake/env_snakemake.yml
conda activate snakemake
snakemake --use-conda --cores 1 --config processed_path=./data
git clone https://github.com/nickdelgrosso/crab_pipeline
cd crab_pipeline
singularity build --fakeroot snakemake.sif envs/snakemake/snakemake.def
singularity run snakemake.sif --use-conda --cores 1 --config processed_path=./data
Note: may take a while the first time.
module load miniconda
conda env create -n jupyter envs/jupyter/env_jupyter.yml # only first time
conda activate jupyter
jupyter lab --no-browser --ip "*" --collaborative --allow-root
To get R Kernel:
module load miniconda
conda env create -n rkernel envs/jupyter/env_rkernel.yml # only first time
To get Python Kernel:
module load miniconda
conda env create -n pykernel envs/jupyter/env_pykernel.yml # only first time
bash run_jupyter.sh
Yes! All that's needed is to mount the data folder to the /data/raw directory in the snakemake singularity image.
-
Note: If using WSL, mount the drive on the filesystem first so you can access it:
-
Run snakemake with your bind path and the settings you want (e.g.
singularity run --bind /my/path:/data/raw snakemake.sif --cores 1 --use-conda
)
- SSH to the Login Node to get into SWC's :
ssh username@ssh.swc.ucl.ac.uk
- Once logged in, SSH from there to the HPC Login Node to get into the HPC Network:
ssh username@hpc-gw1
- Once in, start an interactive bash session using the srun command:
srun --pty bash -i
- You're in! Start coding!
Yep! Do the following twice: once for connecting to the ssh from your computer, then again from the ssh node to connect to the hpc-gw1 node:
ssh-keygen -t ed25519
ssh-copy-id username@ssh.swc.ucl.ac.uk
You can learn more here: https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys-2
Yes, you can jump hosts with the '-J' flag:
ssh -J username@ssh.swc.ucl.ac.uk username@hpc-gw1
sudo mount -t drvfs f: /mnt/f
After running jupyter lab, note the port number and ip address.
Then make a new SSH connection, forwarding the port from that node to your
local machine:
ssh -L 8888:node-ip-name:8888 username@ssh.swc.ucl.ac.uk
options(repr.plot.width=5, repr.plot.height=4)