Create and activate a python virtual environment with Python 3.9
Then install all required modules by running:
pip install -r requirements.txt
You may get an error regarding torch, please refer to https://pytorch.org/get-started/locally/ in order to download the correct torch version specific to your system
First create a Hugging Face account and setup a user access token in order to access Gemma 2 (https://huggingface.co/docs/hub/security-tokens)
Then run the following:
export OUTPUT_DIR=path/to/your/output/file
export NUM_TRIALS=[number of trials]
export GPUS=[CUDA numbers of gpus (i.e 4,5)]
python eval.py --output_dir=$OUTPUT_DIR --num_trials=$NUM_TRIALS --gpus=GPUS
The following checks the recall of the model (whether or not the model hallucinates values between the input json and the model output) and the accuracy of the movements outlined in the CoA (whether or not the model asks grounded units to cross the river)
export OUTPUT_DIR=path/to/your/output/file
export INPUT_DIR=path/to/your/input/file
python postproc.py --output_dir=$OUTPUT_DIR --input_dir=$INPUT_DIR
Then run the following to print out the
ID RECALL PERCENTAGE,
TYPE RECALL PERCENTAGE,
ALLIANCE RECALL PERCENTAGE,
POSITION RECALL PERCENTAGE,
VALID MOVEMENT PERCENTAGE
export INPUT_DIR=path/to/your/input/file
python stat.py --input_dir=$INPUT_DIR
Create visualization of model generated CoAs by running
export OUTPUT_DIR=path/to/your/output/file
export INPUT_DIR=path/to/your/input/file
python visual.py --output_dir=$OUTPUT_DIR --input_dir=$INPUT_DIR
Example model outputs, a postprocess file and visuals are in the output/20_units folder