Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Momentum regressor #2411

Open
wants to merge 9 commits into
base: devel
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions bindings/python/algorithm/expose-regressor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,17 @@ namespace pinocchio
return frameBodyRegressor(model, data, frameId);
}

boost::python::tuple computeMomentumRegressor_proxy(
const context::Model & model,
context::Data & data,
const context::VectorXs & q,
const context::VectorXs & v)
{
computeMomentumRegressor(model, data, q, v);

return boost::python::make_tuple(data.momentumRegressor, data.dpartial_lagrangian_q);
}

void exposeRegressor()
{
typedef context::Scalar Scalar;
Expand Down Expand Up @@ -123,6 +134,18 @@ namespace pinocchio
"\tdata: data related to the model\n"
"\tq: the joint configuration vector (size model.nq)\n",
bp::return_value_policy<bp::return_by_value>());

bp::def(
"computeMomentumRegressor", &computeMomentumRegressor_proxy,
bp::args("model", "data", "q", "v"),
"Compute the momentum regressor and the partial derivative of the Lagrangian with respect "
"to the configuration, store the result in context::Data and return it.\n\n"
"Parameters:\n"
"\tmodel: model of the kinematic tree\n"
"\tdata: data related to the model\n"
"\tq: the joint configuration vector (size model.nq)\n"
"\tv: the joint velocity vector (size model.nv)\n",
bp::return_value_policy<bp::return_by_value>());
}

} // namespace python
Expand Down
55 changes: 55 additions & 0 deletions include/pinocchio/algorithm/regressor.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -372,6 +372,61 @@ namespace pinocchio
const ModelTpl<Scalar, Options, JointCollectionTpl> & model,
DataTpl<Scalar, Options, JointCollectionTpl> & data,
const Eigen::MatrixBase<ConfigVectorType> & q);

///
/// \brief Computes the momentum regressor and component of time derivative
/// of momentum regressor of the system based on the current robot state.
///
/// The result stored in `data.momentumRegressor` corresponds to a matrix \f$ Y_p \f$ such that
/// \f$ P = Y_p(q, v) \pi = M v \f$ where \f$ \pi \f$ represents the vector of dynamic parameters
/// of each link.
///
/// The result stored in `data.dpartial_lagrangian_q` corresponds to a matrix
/// \f$ Y_h \f$ such that \f$ \frac{\partial L}{\partial q} = Y_h(q, v) \f$.
///
/// \tparam JointCollection Collection of Joint types.
/// \tparam ConfigVectorType Type of the joint configuration vector.
///
/// \param[in] model The model structure representing the rigid body system.
/// \param[in] data The data structure of the rigid body system.
/// \param[in] q The joint configuration vector (dim model.nq).
/// \param[in] v The joint velocity vector (dim model.nv).
///
/// \return A pair containing:
/// - The momentum regressor matrix.
/// - A matrix containing a component of the time derivative of the momentum regressor.
///
template<
typename Scalar,
int Options,
template<typename, int>
class JointCollectionTpl,
typename ConfigVectorType,
typename TangentVectorType>
std::pair<
typename DataTpl<Scalar, Options, JointCollectionTpl>::MatrixXs,
typename DataTpl<Scalar, Options, JointCollectionTpl>::MatrixXs>
computeMomentumRegressor(
const ModelTpl<Scalar, Options, JointCollectionTpl> & model,
DataTpl<Scalar, Options, JointCollectionTpl> & data,
const Eigen::MatrixBase<ConfigVectorType> & q,
const Eigen::MatrixBase<TangentVectorType> & v);

template<
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hi, could you please add a comment to explain the mathematical meaning of computeIndirectRegressors?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think there is no mathematical meaning behind. It is just that the function in Wensing's implementation had this comment:

function  [Y_Hqd, Y_CTqd, Y_Hqd_rot, Y_CTqd_rot]  = Regressor_HqdandCTqd( model, q , qd)
% Indirect regressors term  YHqd a = H qd and YCTqd = C^T qd

typename Scalar,
int Options,
template<typename, int>
class JointCollectionTpl,
typename ConfigVectorType,
typename TangentVectorType>
std::pair<
typename DataTpl<Scalar, Options, JointCollectionTpl>::MatrixXs,
typename DataTpl<Scalar, Options, JointCollectionTpl>::MatrixXs>
computeIndirectRegressors(
const ModelTpl<Scalar, Options, JointCollectionTpl> & model,
DataTpl<Scalar, Options, JointCollectionTpl> & data,
const Eigen::MatrixBase<ConfigVectorType> & q,
const Eigen::MatrixBase<TangentVectorType> & v);
} // namespace pinocchio

/* --- Details -------------------------------------------------------------------- */
Expand Down
159 changes: 159 additions & 0 deletions include/pinocchio/algorithm/regressor.hxx
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@

#include "pinocchio/algorithm/check.hpp"
#include "pinocchio/algorithm/kinematics.hpp"
#include "pinocchio/algorithm/kinematics-derivatives.hpp"
#include "pinocchio/spatial/skew.hpp"
#include "pinocchio/spatial/symmetric3.hpp"

Expand Down Expand Up @@ -373,11 +374,15 @@ namespace pinocchio
data.liMi[i] = model.jointPlacements[i] * jdata.M();

data.v[i] = jdata.v();
// v[i] = Xup[i] * v[parent[i]] + vJ
if (parent > 0)
data.v[i] += data.liMi[i].actInv(data.v[parent]);

// crm(v{i}) * vJ == v[i] ^ jdata.v()
data.a_gf[i] = jdata.c() + (data.v[i] ^ jdata.v());
// S{i} * qdd{i}
data.a_gf[i] += jdata.S() * jmodel.jointVelocitySelector(a);
// Xup[i] * a[parent[i]]
data.a_gf[i] += data.liMi[i].actInv(data.a_gf[parent]);
}
};
Expand Down Expand Up @@ -407,10 +412,12 @@ namespace pinocchio
const JointIndex i = jmodel.id();
const JointIndex parent = model.parents[i];

// Y(jj,param_inds) = S{j}' * Fi;
data.jointTorqueRegressor.block(
jmodel.idx_v(), 10 * (Eigen::DenseIndex(col_idx) - 1), jmodel.nv(), 10) =
jdata.S().transpose() * data.bodyRegressor;

// Fi = Xup{j}' * Fi;
if (parent > 0)
forceSet::se3Action(data.liMi[i], data.bodyRegressor, data.bodyRegressor);
}
Expand Down Expand Up @@ -548,6 +555,158 @@ namespace pinocchio

return data.potentialEnergyRegressor;
}

template<
typename Scalar,
int Options,
template<typename, int>
class JointCollectionTpl,
typename ConfigVectorType,
typename TangentVectorType>
std::pair<
typename DataTpl<Scalar, Options, JointCollectionTpl>::MatrixXs,
typename DataTpl<Scalar, Options, JointCollectionTpl>::MatrixXs>
computeIndirectRegressors(
const ModelTpl<Scalar, Options, JointCollectionTpl> & model,
DataTpl<Scalar, Options, JointCollectionTpl> & data,
const Eigen::MatrixBase<ConfigVectorType> & q,
const Eigen::MatrixBase<TangentVectorType> & v)
{
typedef context::Data::Matrix6x Matrix6x;
typedef context::Data::MatrixXs MatrixXs;
typedef pinocchio::context::BodyRegressorType BodyRegressorType;

MatrixXs CTregressor = MatrixXs::Zero(model.nv, 10 * (model.njoints - 1));
MatrixXs Hregressor = MatrixXs::Zero(model.nv, 10 * (model.njoints - 1));
for (JointIndex joint_id = 1; joint_id < (JointIndex)model.njoints; ++joint_id)
{
const JointIndex parent_id = model.parents[joint_id];
auto jmodel = model.joints[joint_id];
auto jdata = data.joints[joint_id];
auto i = joint_id;

// update joint model
jmodel.calc(jdata.derived(), q.derived(), v.derived());
// Xup{i} = XJ * model.Xtree{i};
data.liMi[i] = model.jointPlacements[i] * jdata.M();

data.v[i] = jdata.v(); // vJ = S{i} * qd{i};
// if parent>0 then v{i} = Xup{i} * v{parent} + vJ
if (parent_id > 0)
data.v[i] += data.liMi[i].actInv(data.v[parent_id]);

auto Sd = data.v[i].cross(jdata.S());
// compute regressor
// hi = individualRegressor(v[i], v[i] * 0);
// in Wensing's implementation the order is (a, v);
BodyRegressorType hi = bodyRegressor(data.v[i] * 0, data.v[i]);

// reverse substitution
auto j = i;
while (j > 0)
{
auto jdataj = data.joints[j];
auto jmodelj = model.joints[j];

auto Sj = jdataj.S();
auto Sdj = data.v[j].cross(Sj);

// Y_Hqd(jj, param_inds) = S{j}' * hi;
Hregressor.block(model.joints[j].idx_v(), (i - 1) * 10, model.joints[j].nv(), 10) =
Sj.transpose() * hi;
// Y_CTqd(jj, param_inds) = Sd{j}' * hi;
CTregressor.block(model.joints[j].idx_v(), (i - 1) * 10, model.joints[j].nv(), 10) =
Sdj.transpose() * hi;

// hi = Xup[i]' * hi
forceSet::se3Action(data.liMi[j], hi, hi);

// j = model.parent(j);
j = model.parents[j];
}
}

return std::make_pair(Hregressor, CTregressor);
}

template<
typename Scalar,
int Options,
template<typename, int>
class JointCollectionTpl,
typename ConfigVectorType,
typename TangentVectorType>
std::pair<
typename DataTpl<Scalar, Options, JointCollectionTpl>::MatrixXs,
typename DataTpl<Scalar, Options, JointCollectionTpl>::MatrixXs>
computeMomentumRegressor(
const ModelTpl<Scalar, Options, JointCollectionTpl> & model,
DataTpl<Scalar, Options, JointCollectionTpl> & data,
const Eigen::MatrixBase<ConfigVectorType> & q,
const Eigen::MatrixBase<TangentVectorType> & v)
{
typedef context::Data::Matrix6x Matrix6x;
typedef context::Data::MatrixXs MatrixXs;

// symbolic jacobian of the spatial kinetic energy
auto spatialKineticEnergyJacobian =
[](const Eigen::Vector3d & v, const Eigen::Vector3d & w) -> Eigen::Matrix<double, 6, 10> {
Eigen::Matrix<double, 10, 6> jacobian;
jacobian << v[0], v[1], v[2], 0, 0, 0, \
0, w[2], -w[1], 0, -v[2], v[1], \
-w[2], 0, w[0], v[2], 0, -v[0], \
w[1], -w[0], 0, -v[1], v[0], 0, \
0, 0, 0, w[0], 0, 0, \
0, 0, 0, w[1], w[0], 0, \
0, 0, 0, 0, w[1], 0, \
0, 0, 0, w[2], 0, w[0], \
0, 0, 0, 0, w[2], w[1], \
0, 0, 0, 0, 0, w[2];

return jacobian.transpose();
};

// zero the regressors
data.momentumRegressor.setZero();
data.dpartial_lagrangian_q.setZero();

auto zero_v = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>::Zero(model.nv);

// first compute the momentum regressor with gravity terms included
computeJointTorqueRegressor(model, data, q, zero_v, v);
MatrixXs momentum_with_gravity = data.jointTorqueRegressor.eval();

// compute the gravity component of the regressor
computeJointTorqueRegressor(model, data, q, zero_v, zero_v);
MatrixXs gravity_regressor = data.jointTorqueRegressor.eval();

data.momentumRegressor = momentum_with_gravity - gravity_regressor;
forwardKinematics(model, data, q, v);
computeForwardKinematicsDerivatives(model, data, q, v, zero_v);

for (JointIndex joint_id = 1; joint_id < (JointIndex)model.njoints; ++joint_id)
{

Motion v_i = getVelocity(model, data, joint_id, LOCAL);

Matrix6x partial_dq(Matrix6x::Zero(6, model.nv));
Matrix6x dvb_dv(Matrix6x::Zero(6, model.nv));

getJointVelocityDerivatives(model, data, joint_id, LOCAL, partial_dq, dvb_dv);

// auto dvb_dv = velocity_derivatives.second;
auto phik_dv = spatialKineticEnergyJacobian(v_i.linear(), v_i.angular());

auto phik_dv_joint = dvb_dv.transpose() * phik_dv;
data.dpartial_lagrangian_q.middleCols((joint_id - 1) * 10, 10) = phik_dv_joint;
}

// Subtract the static regressor to get the final result
data.dpartial_lagrangian_q -= gravity_regressor;

return std::make_pair(data.momentumRegressor.eval(), data.dpartial_lagrangian_q.eval());
}

} // namespace pinocchio

#endif // ifndef __pinocchio_algorithm_regressor_hxx__
3 changes: 3 additions & 0 deletions include/pinocchio/bindings/python/multibody/data.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -256,6 +256,9 @@ namespace pinocchio
.ADD_DATA_PROPERTY(jointTorqueRegressor, "Joint torque regressor.")
.ADD_DATA_PROPERTY(kineticEnergyRegressor, "Kinetic energy regressor.")
.ADD_DATA_PROPERTY(potentialEnergyRegressor, "Potential energy regressor.")
.ADD_DATA_PROPERTY(momentumRegressor, "Momentum regressor.")
.ADD_DATA_PROPERTY(
dpartial_lagrangian_q, "Partial Lagrangian with respect to the joint configuration.")

#ifndef PINOCCHIO_PYTHON_SKIP_COMPARISON_OPERATIONS
.def(bp::self == bp::self)
Expand Down
6 changes: 6 additions & 0 deletions include/pinocchio/multibody/data.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -505,6 +505,12 @@ namespace pinocchio
/// \brief Matrix related to potential energy regressor
RowVectorXs potentialEnergyRegressor;

/// \brief Matrix related to momentum regressor
MatrixXs momentumRegressor;
lvjonok marked this conversation as resolved.
Show resolved Hide resolved

/// \brief Matrix related to partial Lagrangian with respect to the joint configuration
MatrixXs dpartial_lagrangian_q;

PINOCCHIO_ALIGNED_STD_VECTOR(Matrix6x) KA;
PINOCCHIO_ALIGNED_STD_VECTOR(MatrixXs) LA;
PINOCCHIO_ALIGNED_STD_VECTOR(VectorXs) lA;
Expand Down
2 changes: 2 additions & 0 deletions include/pinocchio/multibody/data.hxx
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,8 @@ namespace pinocchio
, jointTorqueRegressor(MatrixXs::Zero(model.nv, 10 * (model.njoints - 1)))
, kineticEnergyRegressor(RowVectorXs::Zero(10 * (model.njoints - 1)))
, potentialEnergyRegressor(RowVectorXs::Zero(10 * (model.njoints - 1)))
, momentumRegressor(MatrixXs::Zero(model.nv, 10 * (model.njoints - 1)))
, dpartial_lagrangian_q(MatrixXs::Zero(model.nv, 10 * (model.njoints - 1)))
, KA((std::size_t)model.njoints, Matrix6x::Zero(6, 0))
, LA((std::size_t)model.njoints, MatrixXs::Zero(0, 0))
, lA((std::size_t)model.njoints, VectorXs::Zero(0))
Expand Down
25 changes: 25 additions & 0 deletions src/algorithm/regressor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -117,4 +117,29 @@ namespace pinocchio
context::VectorXs>(
const context::Model &, context::Data &, const Eigen::MatrixBase<context::VectorXs> &);

template PINOCCHIO_EXPLICIT_INSTANTIATION_DEFINITION_DLLAPI
std::pair<context::Data::MatrixXs, context::Data::MatrixXs>
computeIndirectRegressors<
context::Scalar,
context::Options,
JointCollectionDefaultTpl,
context::VectorXs,
context::VectorXs>(
const context::Model &,
context::Data &,
const Eigen::MatrixBase<context::VectorXs> &,
const Eigen::MatrixBase<context::VectorXs> &);

template PINOCCHIO_EXPLICIT_INSTANTIATION_DEFINITION_DLLAPI
std::pair<context::Data::MatrixXs, context::Data::MatrixXs>
computeMomentumRegressor<
context::Scalar,
context::Options,
JointCollectionDefaultTpl,
context::VectorXs,
context::VectorXs>(
const context::Model &,
context::Data &,
const Eigen::MatrixBase<context::VectorXs> &,
const Eigen::MatrixBase<context::VectorXs> &);
} // namespace pinocchio
Loading
Loading