Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add more citations #384

Merged
merged 1 commit into from
Nov 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 42 additions & 1 deletion README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -263,14 +263,40 @@ When using **posterior**, please cite it as follows:
Working with Posterior Distributions.” R package version XXX, <URL:
https://mc-stan.org/posterior/>.

When using the MCMC convergence diagnostics `rhat`, `ess_bulk`, or `ess_tail`,
When using the MCMC convergence diagnostics `rhat`, `ess_bulk`, `ess_tail`,
`ess_median`, `ess_quantile`, `mcse_median`, or `mcse_quantile`
please also cite

* Vehtari A., Gelman A., Simpson D., Carpenter B., & Bürkner P. C. (2021).
Rank-normalization, folding, and localization: An improved Rhat for assessing
convergence of MCMC (with discussion). *Bayesian Analysis*. 16(2), 667–718.
doi.org/10.1214/20-BA1221

When using the MCMC convergence diagnostic `rhat_nested`
please also cite

* Margossian, C. C., Hoffman, M. D., Sountsov, P., Riou-Durand, L.,
Vehtari, A., and Gelman, A. (2024).
Nested $\widehat{R}$: Assessing the convergence of Markov chain
Monte Carlo when running many short chains. *Bayesian Analysis*,
doi:10.1214/24-BA1453.

When using the MCMC convergence diagnostic `rstar`
please also cite

* Lambert, B. and Vehtari, A. (2022). $R^*$: A robust MCMC convergence
diagnostic with uncertainty using decision tree classifiers.
*Bayesian Analysis*, 17(2):353-379.
doi:10.1214/20-BA1252

When using the Pareto-k diagnostics `pareto_khat`, `pareto_min_ss`,
`pareto_convergence_rate`, `khat_threshold` or `pareto_diags`, or
Pareto smoothing `pareto_smooth` please also cite

* Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024).
Pareto smoothed importance sampling.
*Journal of Machine Learning Research*, 25(72):1-58.

The same information can be obtained by running `citation("posterior")`.

### References
Expand All @@ -279,11 +305,26 @@ Gelman A., Carlin J. B., Stern H. S., David B. Dunson D. B., Aki Vehtari A.,
& Rubin D. B. (2013). *Bayesian Data Analysis, Third Edition*. Chapman and
Hall/CRC.

Lambert, B. and Vehtari, A. (2022). $R^*$: A robust MCMC convergence
diagnostic with uncertainty using decision tree classifiers.
*Bayesian Analysis*, 17(2):353-379.
doi:10.1214/20-BA1252

Margossian, C. C., Hoffman, M. D., Sountsov, P., Riou-Durand, L.,
Vehtari, A., and Gelman, A. (2024).
Nested $\widehat{R}$: Assessing the convergence of Markov chain
Monte Carlo when running many short chains. *Bayesian Analysis*,
doi:10.1214/24-BA1453.

Vehtari A., Gelman A., Simpson D., Carpenter B., & Bürkner P. C. (2021).
Rank-normalization, folding, and localization: An improved Rhat for assessing
convergence of MCMC (with discussion). *Bayesian Analysis*. 16(2), 667–718.
doi.org/10.1214/20-BA1221

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024).
Pareto smoothed importance sampling.
*Journal of Machine Learning Research*, 25(72):1-58.

### Licensing

The **posterior** package is licensed under the following licenses:
Expand Down
61 changes: 59 additions & 2 deletions inst/CITATION
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,64 @@ for assessing convergence of MCMC (with discussion)",
person("Daniel", "Simpson"),
person("Bob", "Carpenter"),
person("Paul-Christian", "Bürkner")),
year = "2021",
journal = "Bayesian Analysis",
header = "To cite the MCMC convergence diagnostics:"
year = "2021",
volume = "16",
number = "2",
pages = "667-718",
header = "To cite the MCMC convergence diagnostics (`rhat`, `ess_bulk`, `ess_tail`,
`ess_median`, `ess_quantile`, `mcse_median`, and `mcse_quantile`):"
)

bibentry(
title = "Nested Rhat: Assessing the convergence of Markov chain Monte Carlo when running many short chains",
bibtype = "Article",
author = c(
person("Charles C.", "Margossian"),
person("Matthew D.", "Hoffman"),
person("Pavel", "Sountsov"),
person("Lionel", "Riou-Durand"),
person("Aki", "Vehtari"),
person("Andrew", "Gelman")
),
journal = "Bayesian Analysis",
year = 2024,
doi = "10.1214/24-BA1453",
header = "To cite MCMC convergence diagnostic `nested_rhat`:"
)

bibentry(
title = "Rstar: A robust MCMC convergence diagnostic with uncertainty using decision tree classifiers",
bibtype = "Article",
author = c(
person("Ben", "Lambert"),
person("Aki", "Vehtari")
),
journal = "Bayesian Analysis",
year = 2022,
volume = 17,
number = 2,
pages = "353-379",
doi = "10.1214/20-BA1252",
header = "To cite MCMC convergence diagnostic `rstar`:"
)

bibentry(
title = "Pareto smoothed importance sampling",
bibtype = "Article",
author = c(
person("Aki", "Vehtari"),
person("Daniel", "Simpson"),
person("Andrew", "Gelman"),
person("Yuling", "Yao"),
person("Jonah", "Gabry")
),
journal = "Journal of Machine Learning Research",
year = 2024,
volume = 25,
number = 72,
pages = "1-58",
header = "To cite Pareto-k diagnostics and Pareto smoothing (`pareto_khat`, `pareto_min_ss`,
`pareto_convergence_rate`, `khat_threshold`, `pareto_diags`, and
`pareto_smooth`):"
)
Loading