-
Notifications
You must be signed in to change notification settings - Fork 1.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #81 from zhjain/support-ollama
Add support ollama
- Loading branch information
Showing
3 changed files
with
192 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -17,6 +17,7 @@ local_* | |
build/ | ||
*.egg-info/ | ||
.idea | ||
.venv | ||
|
||
# Project-specific | ||
secrets.toml | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
""" | ||
STORM Wiki pipeline powered by local model hosted by Ollama server and You.com or Bing search engine. | ||
You need to set up the following environment variables to run this script: | ||
- YDC_API_KEY: You.com API key; or, BING_SEARCH_API_KEY: Bing Search API key | ||
You also need to have a Ollama server running with the llama3 model or other. Specify `--url`, `--port` and `--model` accordingly. | ||
Output will be structured as below | ||
args.output_dir/ | ||
topic_name/ # topic_name will follow convention of underscore-connected topic name w/o space and slash | ||
conversation_log.json # Log of information-seeking conversation | ||
raw_search_results.json # Raw search results from search engine | ||
direct_gen_outline.txt # Outline directly generated with LLM's parametric knowledge | ||
storm_gen_outline.txt # Outline refined with collected information | ||
url_to_info.json # Sources that are used in the final article | ||
storm_gen_article.txt # Final article generated | ||
storm_gen_article_polished.txt # Polished final article (if args.do_polish_article is True) | ||
""" | ||
import os | ||
import sys | ||
from argparse import ArgumentParser | ||
|
||
from dspy import Example | ||
|
||
sys.path.append('./src') | ||
from lm import OllamaClient | ||
from rm import YouRM, BingSearch | ||
from storm_wiki.engine import STORMWikiRunnerArguments, STORMWikiRunner, STORMWikiLMConfigs | ||
from utils import load_api_key | ||
|
||
|
||
def main(args): | ||
load_api_key(toml_file_path='secrets.toml') | ||
lm_configs = STORMWikiLMConfigs() | ||
|
||
ollama_kwargs = { | ||
"model": args.model, | ||
"port": args.port, | ||
"url": args.url, | ||
"stop": ('\n\n---',) # dspy uses "\n\n---" to separate examples. Open models sometimes generate this. | ||
} | ||
|
||
conv_simulator_lm = OllamaClient(max_tokens=500, **ollama_kwargs) | ||
question_asker_lm = OllamaClient(max_tokens=500, **ollama_kwargs) | ||
outline_gen_lm = OllamaClient(max_tokens=400, **ollama_kwargs) | ||
article_gen_lm = OllamaClient(max_tokens=700, **ollama_kwargs) | ||
article_polish_lm = OllamaClient(max_tokens=4000, **ollama_kwargs) | ||
|
||
lm_configs.set_conv_simulator_lm(conv_simulator_lm) | ||
lm_configs.set_question_asker_lm(question_asker_lm) | ||
lm_configs.set_outline_gen_lm(outline_gen_lm) | ||
lm_configs.set_article_gen_lm(article_gen_lm) | ||
lm_configs.set_article_polish_lm(article_polish_lm) | ||
|
||
engine_args = STORMWikiRunnerArguments( | ||
output_dir=args.output_dir, | ||
max_conv_turn=args.max_conv_turn, | ||
max_perspective=args.max_perspective, | ||
search_top_k=args.search_top_k, | ||
max_thread_num=args.max_thread_num, | ||
) | ||
|
||
# STORM is a knowledge curation system which consumes information from the retrieval module. | ||
# Currently, the information source is the Internet and we use search engine API as the retrieval module. | ||
if args.retriever == 'bing': | ||
rm = BingSearch(bing_search_api=os.getenv('BING_SEARCH_API_KEY'), k=engine_args.search_top_k) | ||
elif args.retriever == 'you': | ||
rm = YouRM(ydc_api_key=os.getenv('YDC_API_KEY'), k=engine_args.search_top_k) | ||
|
||
runner = STORMWikiRunner(engine_args, lm_configs, rm) | ||
|
||
# Open LMs are generally weaker in following output format. | ||
# One way for mitigation is to add one-shot example to the prompt to exemplify the desired output format. | ||
# For example, we can add the following examples to the two prompts used in StormPersonaGenerator. | ||
# Note that the example should be an object of dspy.Example with fields matching the InputField | ||
# and OutputField in the prompt (i.e., dspy.Signature). | ||
find_related_topic_example = Example( | ||
topic="Knowledge Curation", | ||
related_topics="https://en.wikipedia.org/wiki/Knowledge_management\n" | ||
"https://en.wikipedia.org/wiki/Information_science\n" | ||
"https://en.wikipedia.org/wiki/Library_science\n" | ||
) | ||
gen_persona_example = Example( | ||
topic="Knowledge Curation", | ||
examples="Title: Knowledge management\n" | ||
"Table of Contents: History\nResearch\n Dimensions\n Strategies\n Motivations\nKM technologies" | ||
"\nKnowledge barriers\nKnowledge retention\nKnowledge audit\nKnowledge protection\n" | ||
" Knowledge protection methods\n Formal methods\n Informal methods\n" | ||
" Balancing knowledge protection and knowledge sharing\n Knowledge protection risks", | ||
personas="1. Historian of Knowledge Systems: This editor will focus on the history and evolution of knowledge curation. They will provide context on how knowledge curation has changed over time and its impact on modern practices.\n" | ||
"2. Information Science Professional: With insights from 'Information science', this editor will explore the foundational theories, definitions, and philosophy that underpin knowledge curation\n" | ||
"3. Digital Librarian: This editor will delve into the specifics of how digital libraries operate, including software, metadata, digital preservation.\n" | ||
"4. Technical expert: This editor will focus on the technical aspects of knowledge curation, such as common features of content management systems.\n" | ||
"5. Museum Curator: The museum curator will contribute expertise on the curation of physical items and the transition of these practices into the digital realm." | ||
) | ||
runner.storm_knowledge_curation_module.persona_generator.create_writer_with_persona.find_related_topic.demos = [ | ||
find_related_topic_example] | ||
runner.storm_knowledge_curation_module.persona_generator.create_writer_with_persona.gen_persona.demos = [ | ||
gen_persona_example] | ||
|
||
# A trade-off of adding one-shot example is that it will increase the input length of the prompt. Also, some | ||
# examples may be very long (e.g., an example for writing a section based on the given information), which may | ||
# confuse the model. For these cases, you can create a pseudo-example that is short and easy to understand to steer | ||
# the model's output format. | ||
# For example, we can add the following pseudo-examples to the prompt used in WritePageOutlineFromConv and | ||
# ConvToSection. | ||
write_page_outline_example = Example( | ||
topic="Example Topic", | ||
conv="Wikipedia Writer: ...\nExpert: ...\nWikipedia Writer: ...\nExpert: ...", | ||
old_outline="# Section 1\n## Subsection 1\n## Subsection 2\n" | ||
"# Section 2\n## Subsection 1\n## Subsection 2\n" | ||
"# Section 3", | ||
outline="# New Section 1\n## New Subsection 1\n## New Subsection 2\n" | ||
"# New Section 2\n" | ||
"# New Section 3\n## New Subsection 1\n## New Subsection 2\n## New Subsection 3" | ||
) | ||
runner.storm_outline_generation_module.write_outline.write_page_outline.demos = [write_page_outline_example] | ||
write_section_example = Example( | ||
info="[1]\nInformation in document 1\n[2]\nInformation in document 2\n[3]\nInformation in document 3", | ||
topic="Example Topic", | ||
section="Example Section", | ||
output="# Example Topic\n## Subsection 1\n" | ||
"This is an example sentence [1]. This is another example sentence [2][3].\n" | ||
"## Subsection 2\nThis is one more example sentence [1]." | ||
) | ||
runner.storm_article_generation.section_gen.write_section.demos = [write_section_example] | ||
|
||
topic = input('Topic: ') | ||
runner.run( | ||
topic=topic, | ||
do_research=args.do_research, | ||
do_generate_outline=args.do_generate_outline, | ||
do_generate_article=args.do_generate_article, | ||
do_polish_article=args.do_polish_article, | ||
) | ||
runner.post_run() | ||
runner.summary() | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = ArgumentParser() | ||
# global arguments | ||
parser.add_argument('--url', type=str, default='http://localhost', | ||
help='URL of the Ollama server.') | ||
parser.add_argument('--port', type=int, default=11434, | ||
help='Port of the Ollama server.') | ||
parser.add_argument('--model', type=str, default='llama3:latest', | ||
help='Model of the Ollama server.') | ||
parser.add_argument('--output-dir', type=str, default='./results/ollama', | ||
help='Directory to store the outputs.') | ||
parser.add_argument('--max-thread-num', type=int, default=3, | ||
help='Maximum number of threads to use. The information seeking part and the article generation' | ||
'part can speed up by using multiple threads. Consider reducing it if keep getting ' | ||
'"Exceed rate limit" error when calling LM API.') | ||
parser.add_argument('--retriever', type=str, choices=['bing', 'you'], | ||
help='The search engine API to use for retrieving information.') | ||
# stage of the pipeline | ||
parser.add_argument('--do-research', action='store_true', | ||
help='If True, simulate conversation to research the topic; otherwise, load the results.') | ||
parser.add_argument('--do-generate-outline', action='store_true', | ||
help='If True, generate an outline for the topic; otherwise, load the results.') | ||
parser.add_argument('--do-generate-article', action='store_true', | ||
help='If True, generate an article for the topic; otherwise, load the results.') | ||
parser.add_argument('--do-polish-article', action='store_true', | ||
help='If True, polish the article by adding a summarization section and (optionally) removing ' | ||
'duplicate content.') | ||
# hyperparameters for the pre-writing stage | ||
parser.add_argument('--max-conv-turn', type=int, default=3, | ||
help='Maximum number of questions in conversational question asking.') | ||
parser.add_argument('--max-perspective', type=int, default=3, | ||
help='Maximum number of perspectives to consider in perspective-guided question asking.') | ||
parser.add_argument('--search-top-k', type=int, default=3, | ||
help='Top k search results to consider for each search query.') | ||
# hyperparameters for the writing stage | ||
parser.add_argument('--retrieve-top-k', type=int, default=3, | ||
help='Top k collected references for each section title.') | ||
parser.add_argument('--remove-duplicate', action='store_true', | ||
help='If True, remove duplicate content from the article.') | ||
|
||
main(parser.parse_args()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters