About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Applies a plane rotation.
npm install @stdlib/blas-base-csrot
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var csrot = require( '@stdlib/blas-base-csrot' );
Applies a plane rotation.
var Complex64Array = require( '@stdlib/array-complex64' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
csrot( cx.length, cx, 1, cy, 1, 0.8, 0.6 );
var z = cy.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns ~-0.6
var im = imagf( z );
// returns ~-1.2
z = cx.get( 0 );
// returns <Complex64>
re = realf( z );
// returns ~0.8
im = imagf( z );
// returns ~1.6
The function has the following parameters:
- N: number of indexed elements.
- cx: first input
Complex64Array
. - strideX: index increment for
cx
. - cy: second input
Complex64Array
. - strideY: index increment for
cy
.
The N
and stride parameters determine how values from cx
and cy
are accessed at runtime. For example, to apply a plane rotation to every other element,
var Complex64Array = require( '@stdlib/array-complex64' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
csrot( 2, cx, 2, cy, 2, 0.8, 0.6 );
var z = cy.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns ~-0.6
var im = imagf( z );
// returns ~-1.2
z = cx.get( 0 );
// returns <Complex64>
re = realf( z );
// returns ~0.8
im = imagf( z );
// returns ~1.6
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Complex64Array = require( '@stdlib/array-complex64' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
// Initial arrays...
var cx0 = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy0 = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
// Create offset views...
var cx1 = new Complex64Array( cx0.buffer, cx0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var cy1 = new Complex64Array( cy0.buffer, cy0.BYTES_PER_ELEMENT*2 ); // start at 3rd element
csrot( 2, cx1, -2, cy1, 1, 0.8, 0.6 );
var z = cy0.get( 2 );
// returns <Complex64>
var re = realf( z );
// returns ~-4.2
var im = imagf( z );
// returns ~-4.8
z = cx0.get( 3 );
// returns <Complex64>
re = realf( z );
// returns ~5.6
im = imagf( z );
// returns ~6.4
Applies a plane rotation using alternative indexing semantics.
var Complex64Array = require( '@stdlib/array-complex64' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
csrot.ndarray( cx.length, cx, 1, 0, cy, 1, 0, 0.8, 0.6 );
var z = cy.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns ~-0.6
var im = imagf( z );
// returns ~-1.2
z = cx.get( 0 );
// returns <Complex64>
re = realf( z );
// returns ~0.8
im = imagf( z );
// returns ~1.6
The function has the following additional parameters:
- offsetX: starting index for
cx
. - offsetY: starting index for
cy
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to apply a plane rotation to every other element starting from the second element,
var Complex64Array = require( '@stdlib/array-complex64' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
csrot.ndarray( 2, cx, 2, 1, cy, 2, 1, 0.8, 0.6 );
var z = cy.get( 3 );
// returns <Complex64>
var re = realf( z );
// returns ~-4.2
var im = imagf( z );
// returns ~-4.8
z = cx.get( 1 );
// returns <Complex64>
re = realf( z );
// returns ~2.4
im = imagf( z );
// returns ~3.2
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var ccopy = require( '@stdlib/blas-base-ccopy' );
var zeros = require( '@stdlib/array-zeros' );
var logEach = require( '@stdlib/console-log-each' );
var csrot = require( '@stdlib/blas-base-csrot' );
function rand() {
return new Complex64( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}
// Generate random input arrays:
var cx = filledarrayBy( 10, 'complex64', rand );
var cxc = ccopy( cx.length, cx, 1, zeros( cx.length, 'complex64' ), 1 );
var cy = filledarrayBy( 10, 'complex64', rand );
var cyc = ccopy( cy.length, cy, 1, zeros( cy.length, 'complex64' ), 1 );
// Apply a plane rotation:
csrot( cx.length, cx, 1, cy, 1, 0.8, 0.6 );
// Print the results:
logEach( '(%s,%s) => (%s,%s)', cxc, cyc, cx, cy );
#include "stdlib/blas/base/csrot.h"
Applies a plane rotation.
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f }; // interleaved real and imaginary components
float y[] = { 5.0f, 6.0f, 7.0f, 8.0f };
c_csrot( 2, (void *)x, 1, (void *)y, 1, 0.8f, 0.6f );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - CX:
[inout] void*
first input array. - strideX:
[in] CBLAS_INT
index increment forCX
. - CY:
[inout] void*
second input array. - strideY:
[in] CBLAS_INT
index increment forCY
. - c:
[in] float
cosine of the angle of rotation. - s:
[in] float
sine of the angle of rotation.
void c_csrot( const CBLAS_INT N, void *CX, const CBLAS_INT strideX, void *CY, const CBLAS_INT strideY, const float c, const float s );
Applies a plane rotation using alternative indexing semantics.
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f }; // interleaved real and imaginary components
float y[] = { 5.0f, 6.0f, 7.0f, 8.0f };
c_csrot_ndarray( 2, (void *)x, 1, 0, (void *)y, 1, 0, 0.8f, 0.6f );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - CX:
[inout] void*
first input array. - strideX:
[in] CBLAS_INT
index increment forCX
. - offsetX:
[in] CBLAS_INT
starting index forCX
. - CY:
[inout] void*
second input array. - strideY:
[in] CBLAS_INT
index increment forCY
. - offsetY:
[in] CBLAS_INT
starting index forCY
. - c:
[in] float
cosine of the angle of rotation. - s:
[in] float
sine of the angle of rotation.
void c_csrot_ndarray( const CBLAS_INT N, void *CX, const CBLAS_INT strideX, const CBLAS_INT offsetX, void *CY, const CBLAS_INT strideY, const CBLAS_INT offsetY, const float c, const float s );
#include "stdlib/blas/base/csrot.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
float y[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
// Specify the number of elements:
const int N = 4;
// Specify stride lengths:
const int strideX = 1;
const int strideY = -1;
// Copy elements:
c_csrot( N, (void *)x, strideX, (void *)y, strideY, 0.8f, 0.6f );
// Print the result:
for ( int i = 0; i < N; i++ ) {
printf( "x[ %i ] = %f + %fj\n", i, x[ i*2 ], x[ (i*2)+1 ] );
printf( "y[ %i ] = %f + %fj\n", i, y[ i*2 ], y[ (i*2)+1 ] );
}
}
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.