Skip to content

Perform a multiply-add operation involving three double-precision complex floating-point numbers.

License

Notifications You must be signed in to change notification settings

stdlib-js/complex-float64-base-mul-add

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

muladd

NPM version Build Status Coverage Status

Perform a multiply-add operation involving three double-precision complex floating-point numbers.

Installation

npm install @stdlib/complex-float64-base-mul-add

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var muladd = require( '@stdlib/complex-float64-base-mul-add' );

muladd( alpha, x, y )

Performs a multiply-add operation involving three double-precision complex floating-point numbers.

var Complex128 = require( '@stdlib/complex-float64-ctor' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );

var z1 = new Complex128( 5.0, 3.0 );
var z2 = new Complex128( -2.0, 1.0 );
var z3 = new Complex128( 7.0, -8.0 );

// Compute `alpha*x + y`:
var v = muladd( z1, z2, z3 );
// returns <Complex128>

var re = real( v );
// returns -6.0

var im = imag( v );
// returns -9.0

The function supports the following parameters:

muladd.assign( ar, ai, xr, xi, yr, yi, out, strideOut, offsetOut )

Performs a multiply-add operation involving three double-precision complex floating-point numbers and assigns the results to an output strided array.

var Float64Array = require( '@stdlib/array-float64' );

var out = new Float64Array( 2 );
var v = muladd.assign( 5.0, 3.0, -2.0, 1.0, 7.0, -8.0, out, 1, 0 );
// returns <Float64Array>[ -6.0, -9.0 ]

var bool = ( out === v );
// returns true

The function supports the following parameters:

  • ar: real component of the first complex number.
  • ai: imaginary component of the first complex number.
  • xr: real component of the second complex number.
  • xi: imaginary component of the second complex number.
  • yr: real component of the third complex number.
  • yi: imaginary component of the third complex number.
  • out: output array.
  • strideOut: stride length for out.
  • offsetOut: starting index for out.

muladd.strided( alpha, sa, oa, x, sx, ox, y, sy, oy, out, so, oo )

Performs a multiply-add operation involving three double-precision complex floating-point numbers stored in real-valued strided array views and assigns results to a provided strided output array.

var Float64Array = require( '@stdlib/array-float64' );

var z1 = new Float64Array( [ 5.0, 3.0 ] );
var z2 = new Float64Array( [ -2.0, 1.0 ] );
var z3 = new Float64Array( [ 7.0, -8.0 ] );
var out = new Float64Array( 2 );

var v = muladd.strided( z1, 1, 0, z2, 1, 0, z3, 1, 0, out, 1, 0 );
// returns <Float64Array>[ -6.0, -9.0 ]

var bool = ( out === v );
// returns true

The function supports the following parameters:

  • alpha: first complex number strided array view.
  • sa: stride length for alpha.
  • oa: starting index for alpha.
  • x: second complex number strided array view.
  • sx: stride length for x.
  • ox: starting index for x.
  • y: third complex number strided array view.
  • sy: stride length for y.
  • oy: starting index for y.
  • out: output array.
  • so: stride length for out.
  • oo: starting index for out.

Examples

var Complex128 = require( '@stdlib/complex-float64-ctor' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var muladd = require( '@stdlib/complex-float64-base-mul-add' );

var rand = discreteUniform( -50, 50 );

var z1;
var z2;
var z3;
var i;
for ( i = 0; i < 100; i++ ) {
    z1 = new Complex128( rand(), rand() );
    z2 = new Complex128( rand(), rand() );
    z3 = muladd( z1, z2, z2 );
    console.log( '(%s)*(%s) + (%s) = %s', z1.toString(), z2.toString(), z2.toString(), z3.toString() );
}

C APIs

Usage

#include "stdlib/complex/float64/base/mul_add.h"

stdlib_base_complex128_muladd( alpha, x, y )

Performs a multiply-add operation involving three double-precision complex floating-point numbers.

#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/real.h"
#include "stdlib/complex/float64/imag.h"

stdlib_complex128_t z1 = stdlib_complex128( 5.0, 3.0 );
stdlib_complex128_t z2 = stdlib_complex128( -2.0, 1.0 );
stdlib_complex128_t z3 = stdlib_complex128( 7.0, -8.0 );

stdlib_complex128_t out = stdlib_base_complex128_muladd( z1, z2, z3 );

double re = stdlib_complex128_real( out );
// returns -6.0

double im = stdlib_complex128_imag( out );
// returns -9.0

The function accepts the following arguments:

  • alpha: [in] stdlib_complex128_t input value.
  • z1: [in] stdlib_complex128_t input value.
  • z2: [in] stdlib_complex128_t input value.
stdlib_complex128_t stdlib_base_complex128_muladd( const stdlib_complex128_t alpha, const stdlib_complex128_t x, const stdlib_complex128_t y );

Examples

#include "stdlib/complex/float64/base/mul_add.h"
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <stdio.h>

int main( void ) {
    const stdlib_complex128_t x[] = {
        stdlib_complex128( 3.14, 1.5 ),
        stdlib_complex128( -3.14, 1.5 ),
        stdlib_complex128( 0.0, -0.0 ),
        stdlib_complex128( 0.0/0.0, 0.0/0.0 )
    };

    stdlib_complex128_t v;
    stdlib_complex128_t y;
    double re;
    double im;
    int i;
    for ( i = 0; i < 4; i++ ) {
        v = x[ i ];
        stdlib_complex128_reim( v, &re, &im );
        printf( "z = %lf + %lfi\n", re, im );

        y = stdlib_base_complex128_muladd( v, v, v );
        stdlib_complex128_reim( y, &re, &im );
        printf( "z*z + z = %lf + %lfi\n", re, im );
    }
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2025. The Stdlib Authors.