MediLeaf is an application whose motive is to help the individual identify medicinal plants with their properties by just scanning the leaf of any plant which might create curiosity about the plant that leads to the preservation of the valuable plants. This is also an end-to-end deep learning project focusing from development to deployment. You can train your model and deploy it into the FastAPI here.
Currently, mediLeaf can fairly classify 30 different species of plants by using their leaf images.
Scientific Name |
---|
Alpinia Galanga |
Amaranthus Viridis |
Artocarpus Heterophyllus |
Azadirachta Indica |
Basella Alba |
Brassica Juncea |
Carissa Carandas |
Citrus Limon |
Ficus Auriculata |
Ficus Religiosa |
Hibiscus Rosa-sinensis |
Jasminum |
Mangifera Indica |
Mentha |
Moringa Oleifera |
Muntingia Calabura |
Murraya Koenigii |
Nerium Oleander |
Nyctanthes Arbor-tristis |
Ocimum Tenuiflorum |
Piper Betle |
Plectranthus Amboinicus |
Pongamia Pinnata |
Psidium Guajava |
Punica Granatum |
Santalum Album |
Syzygium Cumini |
Syzygium Jambos |
Tabernaemontana Divaricata |
Trigonella Foenum-graecum |
- Update config.yaml
- Update secrets.yaml [Optional]
- Update params.yaml
- Update the entity
- Update the configuration manager in src config
- Update the components
- Update the pipeline
- Update the main.py
- Update the dvc.yaml
- Clone the repository
git clone https://github.com/surajkarki66/MediLeaf_AI
-
Create a Python virtual environment and activate the environment based on your machine(Linux, MacOS, and Windows)
-
Install the requirements
pip install -r requirements.txt
- Run the following command
# Finally run the following command
python main.py
Now,
Model training will start soon
Note
: Check params.yaml
to tweak the configuration of the model.
- First run
dvc repro
- Then,
dvc dag
- Run the following docker command
docker compose up --build
You can perform classification using the API endpoint: http://0.0.0.0:8000/api/v1/classify/
-
Create a Python virtual environment and activate the environment based on your machine(Linux, MacOS, and Windows)
-
Install the dependencies
pip install -r requirements.txt
-
Run the api server
python service.py
You can perform classification using the API endpoint: http://0.0.0.0:8000/api/v1/classify/