-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmodels.py
198 lines (171 loc) · 6.86 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
'''
Models
Define the different NN models we will use
Author: Tawn Kramer
'''
from __future__ import print_function
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Dense, Lambda, ELU
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.layers import Cropping2D
from keras.layers.normalization import BatchNormalization
import conf
conf.init()
def show_model_summary(model):
model.summary()
for layer in model.layers:
print(layer.output_shape)
def get_nvidia_model():
'''
this model is inspired by the NVIDIA paper
https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf
Activation is ELU
Nvidia uses YUV plane inputs
Final dense layers are adjusted for the lower resolutions in use
channel last order is used because it results in fewer final weights and performs better
on limited cpu resources, but does not match the recommended order for Tensorflow.
Check get_nvidia_model_sw for a model using Tensorflow recommended ordering of channels
'''
row, col, ch = conf.row, conf.col, conf.ch
model = Sequential()
model.ch_order = 'channel_first'
model.add(Lambda(lambda x: x/127.5 - 1.,
input_shape=(ch, col, row),
output_shape=(ch, col, row)))
model.add(Convolution2D(24, 5, 5, subsample=(2, 2), border_mode="same"))
model.add(ELU())
model.add(Convolution2D(36, 5, 5, subsample=(2, 2), border_mode="same"))
model.add(ELU())
model.add(Convolution2D(48, 3, 3, subsample=(2, 2), border_mode="same"))
model.add(ELU())
model.add(Convolution2D(64, 3, 3, subsample=(2, 2), border_mode="same"))
model.add(Flatten())
model.add(Dropout(.2))
model.add(ELU())
model.add(Dense(512))
model.add(Dropout(.5))
model.add(ELU())
model.add(Dense(256))
model.add(ELU())
model.add(Dense(128))
model.add(ELU())
model.add(Dense(1))
model.compile(optimizer="adam", loss="mse")
return model
def get_nvidia_model2():
'''
this model is inspired by the NVIDIA paper
https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf
Activation is ELU
Nvidia uses YUV plane inputs
Final dense layers are adjusted for the lower resolutions in use
channel last order is used because it results in fewer final weights and performs better
on limited cpu resources, but does not match the recommended order for Tensorflow.
Check get_nvidia_model_sw for a model using Tensorflow recommended ordering of channels
'''
row, col, ch = conf.row, conf.col, conf.ch
input_shape=(row, col, ch)
model = Sequential()
model.ch_order = 'channel_last'
model.add(Lambda(lambda x: x/127.5 - 1.,
input_shape=(row, col, ch),
output_shape=(row, col, ch)))
#model.add(Cropping2D(cropping=((20,20), (0,0))))
model.add(Convolution2D(64, 5, 5, subsample=(2, 2), border_mode="same"))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Convolution2D(36, 5, 5, subsample=(2, 2), border_mode="same"))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Convolution2D(48, 3, 3, subsample=(2, 2), border_mode="same"))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3, subsample=(2, 2), border_mode="same"))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3, subsample=(1, 1), border_mode="same"))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dropout(.2))
model.add(Activation('relu'))
model.add(Dense(1000))
model.add(Dropout(.5))
model.add(Activation('relu'))
model.add(Dense(100))
model.add(Activation('relu'))
model.add(Dense(10))
model.add(Activation('tanh'))
#two floats for steering and throttle commands
model.add(Dense(1))
#choose a loss function and optimizer
model.compile(loss='mse', optimizer='adam')
show_model_summary(model)
return model
def get_simple_model():
'''
trying for a more simple model
'''
row, col, ch = conf.row, conf.col, conf.ch
input_shape=(row, col, ch)
model = Sequential()
model.ch_order = 'channel_last'
model.add(Lambda(lambda x: x/127.5 - 1.,
input_shape=(row, col, ch),
output_shape=(row, col, ch)))
model.add(MaxPooling2D((2, 2)))
model.add(Convolution2D(9, 5, 5, subsample=(1, 1), border_mode="same"))
model.add(Activation('relu'))
model.add(Dropout(.5))
model.add(MaxPooling2D((2, 2)))
model.add(Convolution2D(9, 3, 3, subsample=(2, 2), border_mode="same"))
model.add(Activation('relu'))
model.add(Dropout(.5))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dropout(.2))
model.add(Activation('relu'))
model.add(Dense(1000))
model.add(Dropout(.5))
model.add(Dense(10))
model.add(Activation('tanh'))
#two floats for steering and throttle commands
model.add(Dense(1))
#choose a loss function and optimizer
model.compile(loss='mse', optimizer='adam')
show_model_summary(model)
return model
def get_nvidia_model_sw():
'''
this model is based on the NVIDIA paper
https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf
This follows a similar approach to model above, but sets the channel order
to the recommended for Tensorflow. This results in nearly 5x more trainiable weights
and did not result in better overal performance in my tests.
'''
row, col, ch = conf.row, conf.col, conf.ch
model = Sequential()
model.ch_order = 'channel_last'
model.add(Lambda(lambda x: x/127.5 - 1.,
input_shape=(row, col, ch),
output_shape=(row, col, ch)))
model.add(Convolution2D(24, 5, 5, subsample=(2, 2), border_mode="same"))
model.add(Activation('relu'))
model.add(Convolution2D(36, 5, 5, subsample=(2, 2), border_mode="same"))
model.add(Activation('relu'))
model.add(Convolution2D(48, 3, 3, subsample=(2, 2), border_mode="same"))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3, subsample=(2, 2), border_mode="same"))
model.add(Flatten())
model.add(Dropout(.2))
model.add(Activation('relu'))
model.add(Dense(512))
model.add(Dropout(.5))
model.add(Activation('relu'))
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dense(128))
model.add(Activation('tanh'))
model.add(Dense(2))
model.compile(optimizer="adam", loss="mse")
return model