-
Notifications
You must be signed in to change notification settings - Fork 80
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add fairness indicator metrics in the third_party library.
PiperOrigin-RevId: 705969893
- Loading branch information
1 parent
1545d46
commit 8789c99
Showing
3 changed files
with
211 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,208 @@ | ||
# Copyright 2020 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Fairness Indicators Metrics.""" | ||
|
||
import collections | ||
from typing import Any, Dict, List, Optional, Sequence | ||
|
||
from tensorflow_model_analysis.metrics import binary_confusion_matrices | ||
from tensorflow_model_analysis.metrics import metric_types | ||
from tensorflow_model_analysis.metrics import metric_util | ||
from tensorflow_model_analysis.proto import config_pb2 | ||
|
||
FAIRNESS_INDICATORS_METRICS_NAME = 'fairness_indicators_metrics' | ||
FAIRNESS_INDICATORS_SUB_METRICS = ( | ||
'false_positive_rate', | ||
'false_negative_rate', | ||
'true_positive_rate', | ||
'true_negative_rate', | ||
'positive_rate', | ||
'negative_rate', | ||
'false_discovery_rate', | ||
'false_omission_rate', | ||
'precision', | ||
'recall', | ||
) | ||
|
||
DEFAULT_THRESHOLDS = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) | ||
|
||
|
||
class FairnessIndicators(metric_types.Metric): | ||
"""Fairness indicators metrics.""" | ||
|
||
def computations_with_logging(self): | ||
"""Add streamz logging for fairness indicators.""" | ||
|
||
computations_fn = metric_util.merge_per_key_computations( | ||
_fairness_indicators_metrics_at_thresholds | ||
) | ||
|
||
def merge_and_log_computations_fn( | ||
eval_config: Optional[config_pb2.EvalConfig] = None, | ||
# A tf metadata schema. | ||
schema: Optional[Any] = None, | ||
model_names: Optional[List[str]] = None, | ||
output_names: Optional[List[str]] = None, | ||
sub_keys: Optional[List[Optional[metric_types.SubKey]]] = None, | ||
aggregation_type: Optional[metric_types.AggregationType] = None, | ||
class_weights: Optional[Dict[int, float]] = None, | ||
example_weighted: bool = False, | ||
query_key: Optional[str] = None, | ||
**kwargs | ||
): | ||
return computations_fn( | ||
eval_config, | ||
schema, | ||
model_names, | ||
output_names, | ||
sub_keys, | ||
aggregation_type, | ||
class_weights, | ||
example_weighted, | ||
query_key, | ||
**kwargs | ||
) | ||
|
||
return merge_and_log_computations_fn | ||
|
||
def __init__( | ||
self, | ||
thresholds: Sequence[float] = DEFAULT_THRESHOLDS, | ||
name: str = FAIRNESS_INDICATORS_METRICS_NAME, | ||
): | ||
"""Initializes fairness indicators metrics. | ||
Args: | ||
thresholds: Thresholds to use for fairness metrics. | ||
name: Metric name. | ||
""" | ||
super().__init__( | ||
self.computations_with_logging(), thresholds=thresholds, name=name | ||
) | ||
|
||
|
||
def calculate_digits(thresholds): | ||
digits = [len(str(t)) - 2 for t in thresholds] | ||
return max(max(digits), 1) | ||
|
||
|
||
def _fairness_indicators_metrics_at_thresholds( | ||
thresholds: List[float], | ||
name: str = FAIRNESS_INDICATORS_METRICS_NAME, | ||
eval_config: Optional[config_pb2.EvalConfig] = None, | ||
model_name: str = '', | ||
output_name: str = '', | ||
aggregation_type: Optional[metric_types.AggregationType] = None, | ||
sub_key: Optional[metric_types.SubKey] = None, | ||
class_weights: Optional[Dict[int, float]] = None, | ||
example_weighted: bool = False, | ||
) -> metric_types.MetricComputations: | ||
"""Returns computations for fairness metrics at thresholds.""" | ||
metric_key_by_name_by_threshold = collections.defaultdict(dict) | ||
keys = [] | ||
digits_num = calculate_digits(thresholds) | ||
for t in thresholds: | ||
for m in FAIRNESS_INDICATORS_SUB_METRICS: | ||
key = metric_types.MetricKey( | ||
name='%s/%s@%.*f' | ||
% ( | ||
name, | ||
m, | ||
digits_num, | ||
t, | ||
), # e.g. "fairness_indicators_metrics/positive_rate@0.5" | ||
model_name=model_name, | ||
output_name=output_name, | ||
sub_key=sub_key, | ||
example_weighted=example_weighted, | ||
) | ||
keys.append(key) | ||
metric_key_by_name_by_threshold[t][m] = key | ||
|
||
# Make sure matrices are calculated. | ||
computations = binary_confusion_matrices.binary_confusion_matrices( | ||
eval_config=eval_config, | ||
model_name=model_name, | ||
output_name=output_name, | ||
sub_key=sub_key, | ||
aggregation_type=aggregation_type, | ||
class_weights=class_weights, | ||
example_weighted=example_weighted, | ||
thresholds=thresholds, | ||
) | ||
confusion_matrices_key = computations[-1].keys[-1] | ||
|
||
def result( | ||
metrics: Dict[metric_types.MetricKey, Any], | ||
) -> Dict[metric_types.MetricKey, Any]: | ||
"""Returns fairness metrics values.""" | ||
metric = metrics[confusion_matrices_key] | ||
output = {} | ||
|
||
for i, threshold in enumerate(thresholds): | ||
num_positives = metric.tp[i] + metric.fn[i] | ||
num_negatives = metric.tn[i] + metric.fp[i] | ||
|
||
tpr = metric.tp[i] / (num_positives or float('nan')) | ||
tnr = metric.tn[i] / (num_negatives or float('nan')) | ||
fpr = metric.fp[i] / (num_negatives or float('nan')) | ||
fnr = metric.fn[i] / (num_positives or float('nan')) | ||
pr = (metric.tp[i] + metric.fp[i]) / ( | ||
(num_positives + num_negatives) or float('nan') | ||
) | ||
nr = (metric.tn[i] + metric.fn[i]) / ( | ||
(num_positives + num_negatives) or float('nan') | ||
) | ||
precision = metric.tp[i] / ((metric.tp[i] + metric.fp[i]) or float('nan')) | ||
recall = metric.tp[i] / ((metric.tp[i] + metric.fn[i]) or float('nan')) | ||
|
||
fdr = metric.fp[i] / ((metric.fp[i] + metric.tp[i]) or float('nan')) | ||
fomr = metric.fn[i] / ((metric.fn[i] + metric.tn[i]) or float('nan')) | ||
|
||
output[ | ||
metric_key_by_name_by_threshold[threshold]['false_positive_rate'] | ||
] = fpr | ||
output[ | ||
metric_key_by_name_by_threshold[threshold]['false_negative_rate'] | ||
] = fnr | ||
output[ | ||
metric_key_by_name_by_threshold[threshold]['true_positive_rate'] | ||
] = tpr | ||
output[ | ||
metric_key_by_name_by_threshold[threshold]['true_negative_rate'] | ||
] = tnr | ||
output[metric_key_by_name_by_threshold[threshold]['positive_rate']] = pr | ||
output[metric_key_by_name_by_threshold[threshold]['negative_rate']] = nr | ||
output[ | ||
metric_key_by_name_by_threshold[threshold]['false_discovery_rate'] | ||
] = fdr | ||
output[ | ||
metric_key_by_name_by_threshold[threshold]['false_omission_rate'] | ||
] = fomr | ||
output[metric_key_by_name_by_threshold[threshold]['precision']] = ( | ||
precision | ||
) | ||
output[metric_key_by_name_by_threshold[threshold]['recall']] = recall | ||
|
||
return output | ||
|
||
derived_computation = metric_types.DerivedMetricComputation( | ||
keys=keys, result=result | ||
) | ||
|
||
computations.append(derived_computation) | ||
return computations | ||
|
||
|
||
metric_types.register_metric(FairnessIndicators) |