Skip to content

Commit

Permalink
remove knn splitting
Browse files Browse the repository at this point in the history
  • Loading branch information
alicialics committed Mar 26, 2023
1 parent e5d1771 commit 9ae767d
Show file tree
Hide file tree
Showing 2 changed files with 29 additions and 145 deletions.
139 changes: 28 additions & 111 deletions tensorboard/plugins/projector/vz_projector/knn.ts
Original file line number Diff line number Diff line change
Expand Up @@ -22,17 +22,9 @@ export type NearestEntry = {
index: number;
dist: number;
};
/**
* Optimal size for the height of the matrix when doing computation on the GPU
* using WebGL. This was found experimentally.
*
* This also guarantees that for computing pair-wise distance for up to 10K
* vectors, no more than 40MB will be allocated in the GPU. Without the
* allocation limit, we can freeze the graphics of the whole OS.
*/
const OPTIMAL_GPU_BLOCK_SIZE = 256;
/** Id of message box used for knn gpu progress bar. */
const KNN_GPU_MSG_ID = 'knn-gpu';

/** Id of message box used for knn. */
const KNN_MSG_ID = 'knn';

/**
* Returns the K nearest neighbors for each vector where the distance
Expand All @@ -52,105 +44,66 @@ export function findKNNGPUCosDistNorm<T>(
const N = dataPoints.length;
const dim = accessor(dataPoints[0]).length;
// The goal is to compute a large matrix multiplication A*A.T where A is of
// size NxD and A.T is its transpose. This results in a NxN matrix which
// could be too big to store on the GPU memory. To avoid memory overflow, we
// compute multiple A*partial_A.T where partial_A is of size BxD (B is much
// smaller than N). This results in storing only NxB size matrices on the GPU
// at a given time.
// size NxD and A.T is its transpose. This results in a NxN matrix.
// A*A.T will give us NxN matrix holding the cosine distance between every
// pair of points, which we sort using KMin data structure to obtain the
// K nearest neighbors for each point.
const nearest: NearestEntry[][] = new Array(N);
let numPieces = Math.ceil(N / OPTIMAL_GPU_BLOCK_SIZE);
const actualPieceSize = Math.floor(N / numPieces);
const modulo = N % actualPieceSize;
numPieces += modulo ? 1 : 0;
let offset = 0;
let progress = 0;
let progressDiff = 1 / (2 * numPieces);
let piece = 0;

const typedArray = vector.toTypedArray(dataPoints, accessor);
const bigMatrix = tf.tensor(typedArray, [N, dim]);
const bigMatrixTransposed = tf.transpose(bigMatrix);
// 1 - A * A^T.
const bigMatrixSquared = tf.matMul(bigMatrix, bigMatrixTransposed);
const cosDistMatrix = tf.sub(1, bigMatrixSquared);

let maybePaddedCosDistMatrix = cosDistMatrix;
if (actualPieceSize * numPieces > N) {
// Expect the input to be rank 2 (though it is not typed that way) so we
// want to pad the first dimension so we split very evenly (all splitted
// tensor have exactly the same dimesion).
const padding: Array<[number, number]> = [
[0, actualPieceSize * numPieces - N],
[0, 0],
];
maybePaddedCosDistMatrix = tf.pad(cosDistMatrix, padding);
}
const splits = tf.split(
maybePaddedCosDistMatrix,
new Array(numPieces).fill(actualPieceSize),
0
);

function step(resolve: (result: NearestEntry[][]) => void) {
let progressMsg =
'Finding nearest neighbors: ' + (progress * 100).toFixed() + '%';
util
.runAsyncTask(
progressMsg,
'Finding nearest neighbors...',
async () => {
// 1 - A * A^T.
const bigMatrixSquared = tf.matMul(bigMatrix, bigMatrixTransposed);
const cosDistMatrix = tf.sub(1, bigMatrixSquared);
// `.data()` returns flattened Float32Array of B * N dimension.
// For matrix of
// [ 1 2 ]
// [ 3 4 ],
// `.data()` returns [1, 2, 3, 4].
const partial = await splits[piece].data();
progress += progressDiff;
for (let i = 0; i < actualPieceSize; i++) {
const partial = await cosDistMatrix.data();
bigMatrixSquared.dispose();
cosDistMatrix.dispose();
for (let i = 0; i < N; i++) {
let kMin = new KMin<NearestEntry>(k);
let iReal = offset + i;
if (iReal >= N) break;
for (let j = 0; j < N; j++) {
// Skip diagonal entries.
if (j === iReal) {
if (j === i) {
continue;
}
// Access i * N's row at `j` column.
// Reach row has N entries and j-th index has cosine distance
// between iReal vs. j-th vectors.
// between i-th vs. j-th vectors.
const cosDist = partial[i * N + j];
if (cosDist >= 0) {
kMin.add(cosDist, {index: j, dist: cosDist});
}
}
nearest[iReal] = kMin.getMinKItems();
nearest[i] = kMin.getMinKItems();
}
progress += progressDiff;
offset += actualPieceSize;
piece++;
},
KNN_GPU_MSG_ID
KNN_MSG_ID,
)
.then(
() => {
if (piece < numPieces) {
step(resolve);
} else {
logging.setModalMessage(null!, KNN_GPU_MSG_ID);
// Discard all tensors and free up the memory.
bigMatrix.dispose();
bigMatrixTransposed.dispose();
bigMatrixSquared.dispose();
cosDistMatrix.dispose();
splits.forEach((split) => split.dispose());
resolve(nearest);
}
logging.setModalMessage(null!, KNN_MSG_ID);
// Discard all tensors and free up the memory.
bigMatrix.dispose();
bigMatrixTransposed.dispose();
resolve(nearest);
},
(error) => {
// Discard all tensors and free up the memory.
bigMatrix.dispose();
bigMatrixTransposed.dispose();
// GPU failed. Reverting back to CPU.
logging.setModalMessage(null!, KNN_GPU_MSG_ID);
logging.setModalMessage(null!, KNN_MSG_ID);
let distFunc = (a, b, limit) => vector.cosDistNorm(a, b);
findKNN(dataPoints, k, accessor, distFunc).then((nearest) => {
resolve(nearest);
Expand Down Expand Up @@ -212,47 +165,12 @@ export function findKNN<T>(
for (let i = 0; i < N; i++) {
nearest[i] = kMin[i].getMinKItems();
}
logging.setModalMessage(null!, KNN_MSG_ID);
return nearest;
}
},
KNN_MSG_ID,
);
}
/** Calculates the minimum distance between a search point and a rectangle. */
function minDist(
point: [number, number],
x1: number,
y1: number,
x2: number,
y2: number
) {
let x = point[0];
let y = point[1];
let dx1 = x - x1;
let dx2 = x - x2;
let dy1 = y - y1;
let dy2 = y - y2;
if (dx1 * dx2 <= 0) {
// x is between x1 and x2
if (dy1 * dy2 <= 0) {
// (x,y) is inside the rectangle
return 0; // return 0 as point is in rect
}
return Math.min(Math.abs(dy1), Math.abs(dy2));
}
if (dy1 * dy2 <= 0) {
// y is between y1 and y2
// We know it is already inside the rectangle
return Math.min(Math.abs(dx1), Math.abs(dx2));
}
let corner: [number, number];
if (x > x2) {
// Upper-right vs lower-right.
corner = y > y2 ? [x2, y2] : [x2, y1];
} else {
// Upper-left vs lower-left.
corner = y > y2 ? [x1, y2] : [x1, y1];
}
return Math.sqrt(vector.dist22D([x, y], corner));
}
/**
* Returns the nearest neighbors of a particular point.
*
Expand Down Expand Up @@ -282,4 +200,3 @@ export function findKNNofPoint<T>(
return kMin.getMinKItems();
}

export const TEST_ONLY = {OPTIMAL_GPU_BLOCK_SIZE};
35 changes: 1 addition & 34 deletions tensorboard/plugins/projector/vz_projector/knn_test.ts
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
import {findKNN, findKNNGPUCosDistNorm, NearestEntry, TEST_ONLY} from './knn';
import {findKNN, findKNNGPUCosDistNorm, NearestEntry} from './knn';
import {cosDistNorm, unit} from './vector';

describe('projector knn test', () => {
Expand Down Expand Up @@ -65,22 +65,6 @@ describe('projector knn test', () => {

expect(getIndices(values)).toEqual([[1], [0]]);
});

it('splits a large data into one that would fit into GPU memory', async () => {
const size = TEST_ONLY.OPTIMAL_GPU_BLOCK_SIZE + 5;
const data = new Array(size).fill(
unitVector(new Float32Array([1, 1, 1]))
);
const values = await findKNNGPUCosDistNorm(data, 1, (a) => a);

expect(getIndices(values)).toEqual([
// Since distance to the diagonal entries (distance to self is 0) is
// non-sensical, the diagonal entires are ignored. So for the first
// item, the nearest neighbor should be 2nd item (index 1).
[1],
...new Array(size - 1).fill([0]),
]);
});
});

describe('#findKNN', () => {
Expand Down Expand Up @@ -108,22 +92,5 @@ describe('projector knn test', () => {
// Floating point precision makes it hard to test. Just assert indices.
expect(getIndices(findKnnGpuCosVal)).toEqual(getIndices(findKnnVal));
});

it('splits a large data without the result being wrong', async () => {
const size = TEST_ONLY.OPTIMAL_GPU_BLOCK_SIZE + 5;
const data = Array.from(new Array(size)).map((_, index) => {
return unitVector(new Float32Array([index + 1, index + 1]));
});

const findKnnGpuCosVal = await findKNNGPUCosDistNorm(data, 2, (a) => a);
const findKnnVal = await findKNN(
data,
2,
(a) => a,
(a, b, limit) => cosDistNorm(a, b)
);

expect(getIndices(findKnnGpuCosVal)).toEqual(getIndices(findKnnVal));
});
});
});

0 comments on commit 9ae767d

Please sign in to comment.