Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

tests for Brulee engines #222

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ Suggests:
baguette,
bonsai,
BradleyTerry2,
brulee,
butcher,
C50,
censored,
Expand Down
31 changes: 31 additions & 0 deletions tests/testthat/helper-data.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
library(modeldata)
library(rsample)

set.seed(392)
binary_tr <- sim_logistic(200, ~ .1 + 2 * A - 3 * B + 1 * A *B, corr = .7)
binary_rs <- vfold_cv(binary_tr)
binary_te <- sim_logistic(2, ~ .1 + 2 * A - 3 * B + 1 * A *B, corr = .7)

###

set.seed(392)
three_class_tr <-
sim_multinomial(
500,
~ -0.5 + 0.6 * abs(A),
~ ifelse(A > 0 & B > 0, 1.0 + 0.2 * A / B, - 2),
~ -0.6 * A + 0.50 * B - A * B)
three_class_rs <- vfold_cv(three_class_tr)
three_class_te <-
sim_multinomial(
2,
~ -0.5 + 0.6 * abs(A),
~ ifelse(A > 0 & B > 0, 1.0 + 0.2 * A / B, - 2),
~ -0.6 * A + 0.50 * B - A * B)

###

num_tr <- sim_regression(200)
num_rs <- vfold_cv(num_tr)
num_te <- sim_regression(2)
Comment on lines +1 to +30
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This runs really fast, can we move all of this into functions?


12 changes: 12 additions & 0 deletions tests/testthat/helper-objects.R
Original file line number Diff line number Diff line change
Expand Up @@ -29,3 +29,15 @@ spark_not_installed <- function() {
}
need_install
}

# ------------------------------------------------------------------------------

is_torch_working <- function() {
res <- try(torch::torch_tensor(1), silent = TRUE)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is causing a warning in R CMD check as an undeclared dependency, can we not just add torch to Suggests?

if (inherits(res, "try-error")) {
ret <- FALSE
} else {
ret <- TRUE
}
ret
}
43 changes: 43 additions & 0 deletions tests/testthat/test-brulee-linear.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
test_that("linear regression via brulee", {
skip_if_not_installed("torch")
skip_if_not(any(get_from_env("linear_reg")$engine == "brulee"))
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can these require a specific version of parsnip instead?

skip_if_not(is_torch_working())

set.seed(2832)
ols_fit <-
linear_reg() %>%
set_engine("brulee", epochs = 2) %>%
fit(outcome ~ ., data = num_tr)
expect_s3_class(ols_fit, c("_brulee_linear_reg", "model_fit"))
ols_pred <- predict(ols_fit, num_te)
expect_true(inherits(ols_pred, "data.frame"))
expect_true(nrow(ols_pred) == 2)
expect_named(ols_pred, ".pred")

# ------------------------------------------------------------------------------
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you split these into two separate tests with more specific test descriptions, please? Applies to all tests with the # ---- separation header.


lr_spec <-
linear_reg(penalty = tune(), mixture = tune()) %>%
set_engine("brulee", epochs = tune(), learn_rate = tune(), stop_iter = tune()) %>%
set_mode("regression")

lr_param <-
lr_spec %>%
extract_parameter_set_dials() %>%
update(
epochs = epochs(c(1, 10))
)

set.seed(487)
lr_res <-
lr_spec %>%
tune_grid(
outcome ~ .,
num_rs,
grid = 2,
param_info = lr_param)

expect_true(nrow(collect_notes(lr_res)) == 0)

})

50 changes: 50 additions & 0 deletions tests/testthat/test-brulee-logistic.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
test_that("logistic regression via brulee", {
skip_if_not_installed("torch")
skip_if_not(any(get_from_env("logistic_reg")$engine == "brulee"))
skip_if_not(is_torch_working())

set.seed(2832)
glm_fit <-
logistic_reg() %>%
set_engine("brulee", epochs = 2, class_weights = 1/2) %>%
fit(class ~ ., data = binary_tr)
expect_s3_class(glm_fit, c("_brulee_logistic_reg", "model_fit"))

glm_class_pred <- predict(glm_fit, binary_te, type = "class")
expect_true(inherits(glm_class_pred, "data.frame"))
expect_true(nrow(glm_class_pred) == 2)
expect_named(glm_class_pred, ".pred_class")

glm_prob_pred <- predict(glm_fit, binary_te, type = "prob")
expect_true(inherits(glm_prob_pred, "data.frame"))
expect_true(nrow(glm_prob_pred) == 2)
expect_named(glm_prob_pred, c(".pred_one", ".pred_two"))


# ------------------------------------------------------------------------------

lr_spec <-
logistic_reg(penalty = tune(), mixture = tune()) %>%
set_engine("brulee", epochs = tune(), learn_rate = tune(),
stop_iter = tune(), class_weights = tune()) %>%
set_mode("classification")

lr_param <-
lr_spec %>%
extract_parameter_set_dials() %>%
update(
epochs = epochs(c(1, 10))
)

set.seed(473)
lr_res <-
lr_spec %>%
tune_grid(
class ~ .,
binary_rs,
grid = 2,
param_info = lr_param)

expect_true(nrow(collect_notes(lr_res)) == 0)

})
146 changes: 146 additions & 0 deletions tests/testthat/test-brulee-mlp.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
test_that("classification neural network via brulee", {
skip_if_not_installed("torch")
skip_if_not(any(get_from_env("mlp")$engine == "brulee"))
skip_if_not(is_torch_working())

set.seed(232)
nnet_fit <-
mlp(hidden_units = 2, learn_rate = 0.01, epochs = 2) %>%
set_engine("brulee", class_weights = 1/2) %>%
set_mode("classification") %>%
fit(class ~ ., data = three_class_tr)
expect_s3_class(nnet_fit, c("_brulee_mlp", "model_fit"))

nnet_class_pred <- predict(nnet_fit, three_class_te, type = "class")
expect_true(inherits(nnet_class_pred, "data.frame"))
expect_true(nrow(nnet_class_pred) == 2)
expect_named(nnet_class_pred, ".pred_class")

nnet_prob_pred <- predict(nnet_fit, three_class_te, type = "prob")
expect_true(inherits(nnet_prob_pred, "data.frame"))
expect_true(nrow(nnet_prob_pred) == 2)
expect_named(nnet_prob_pred, c(".pred_one", ".pred_two", ".pred_three"))

})

test_that("regression neural network via brulee", {
skip_if_not_installed("torch")
skip_if_not(any(get_from_env("mlp")$engine == "brulee"))
skip_if_not(is_torch_working())

set.seed(2832)
nnet_fit <-
mlp(hidden_units = 2, learn_rate = 0.01, epochs = 2) %>%
set_engine("brulee") %>%
set_mode("regression") %>%
fit(outcome ~ ., data = num_tr)
expect_s3_class(nnet_fit, c("_brulee_mlp", "model_fit"))

nnet_class_pred <- predict(nnet_fit, num_te)
expect_true(inherits(nnet_class_pred, "data.frame"))
expect_true(nrow(nnet_class_pred) == 2)
expect_named(nnet_class_pred, ".pred")

# ------------------------------------------------------------------------------

nnet_spec <-
mlp(hidden_units = tune(), learn_rate = tune(), epochs = tune(),
penalty = tune(), activation = tune()) %>%
set_engine("brulee", stop_iter = tune()) %>%
set_mode("regression")

nnet_param <-
nnet_spec %>%
extract_parameter_set_dials() %>%
update(
hidden_units = hidden_units(c(2, 5)),
epochs = epochs(c(1, 10))
)

set.seed(682)
nnet_res <-
nnet_spec %>%
tune_grid(
outcome ~ .,
num_rs,
grid = 2,
param_info = nnet_param)

expect_true(nrow(collect_notes(nnet_res)) == 0)
})


test_that("classification neural network (2 hidden layers) via brulee", {
skip_if_not_installed("torch")
skip_if_not(any(get_from_env("mlp")$engine == "brulee_two_layer"))
skip_if_not(is_torch_working())

set.seed(28132)
nnet_fit <-
mlp(hidden_units = 2, learn_rate = 0.01, epochs = 2) %>%
set_engine("brulee_two_layer", class_weights = 1/2, hidden_units_2 = 3,
activation_2 = "elu") %>%
set_mode("classification") %>%
fit(class ~ ., data = three_class_tr)
expect_s3_class(nnet_fit, c("_brulee_two_layer_mlp", "model_fit"))

nnet_class_pred <- predict(nnet_fit, three_class_te, type = "class")
expect_true(inherits(nnet_class_pred, "data.frame"))
expect_true(nrow(nnet_class_pred) == 2)
expect_named(nnet_class_pred, ".pred_class")

nnet_prob_pred <- predict(nnet_fit, three_class_te, type = "prob")
expect_true(inherits(nnet_prob_pred, "data.frame"))
expect_true(nrow(nnet_prob_pred) == 2)
expect_named(nnet_prob_pred, c(".pred_one", ".pred_two", ".pred_three"))

# ------------------------------------------------------------------------------

nnet_spec <-
mlp(hidden_units = tune(), learn_rate = tune(), epochs = tune(),
penalty = tune(), activation = tune()) %>%
set_engine("brulee_two_layer", class_weights = tune(),
hidden_units_2 = tune(),
activation_2 = tune()) %>%
set_mode("classification")

nnet_param <-
nnet_spec %>%
extract_parameter_set_dials() %>%
update(
hidden_units = hidden_units(c(2, 5)),
hidden_units_2 = hidden_units_2(c(2, 5)),
epochs = epochs(c(1, 10))
)

set.seed(28132)
nnet_res <-
nnet_spec %>%
tune_grid(
class ~ .,
binary_rs,
grid = 2,
param_info = nnet_param)
expect_true(nrow(collect_notes(nnet_res)) == 0)

})

test_that("regression neural network (2 hidden layers) via brulee", {
skip_if_not_installed("torch")
skip_if_not(any(get_from_env("mlp")$engine == "brulee_two_layer"))
skip_if_not(is_torch_working())

set.seed(2832)
nnet_fit <-
mlp(hidden_units = 2, learn_rate = 0.01, epochs = 2) %>%
set_engine("brulee_two_layer", hidden_units_2 = 3, activation_2 = "elu") %>%
set_mode("regression") %>%
fit(outcome ~ ., data = num_tr)
expect_s3_class(nnet_fit, c("_brulee_two_layer_mlp", "model_fit"))

nnet_class_pred <- predict(nnet_fit, num_te)
expect_true(inherits(nnet_class_pred, "data.frame"))
expect_true(nrow(nnet_class_pred) == 2)
expect_named(nnet_class_pred, ".pred")
})

50 changes: 50 additions & 0 deletions tests/testthat/test-brulee-multinom.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
test_that("multinomial regression via brulee", {
skip_if_not_installed("torch")
skip_if_not(any(get_from_env("multinom_reg")$engine == "brulee"))
skip_if_not(is_torch_working())

set.seed(2832)
mnl_fit <-
multinom_reg() %>%
set_engine("brulee", epochs = 2, class_weights = 1/2) %>%
fit(class ~ ., data = three_class_tr)
expect_s3_class(mnl_fit, c("_brulee_multinom_reg", "model_fit"))

mnl_class_pred <- predict(mnl_fit, three_class_te, type = "class")
expect_true(inherits(mnl_class_pred, "data.frame"))
expect_true(nrow(mnl_class_pred) == 2)
expect_named(mnl_class_pred, ".pred_class")

mnl_prob_pred <- predict(mnl_fit, three_class_te, type = "prob")
expect_true(inherits(mnl_prob_pred, "data.frame"))
expect_true(nrow(mnl_prob_pred) == 2)
expect_named(mnl_prob_pred, c(".pred_one", ".pred_two", ".pred_three"))


# ------------------------------------------------------------------------------

mnl_spec <-
multinom_reg(penalty = tune(), mixture = tune()) %>%
set_engine("brulee", epochs = tune(), learn_rate = tune(),
stop_iter = tune(), class_weights = tune()) %>%
set_mode("classification")

mnl_param <-
mnl_spec %>%
extract_parameter_set_dials() %>%
update(
epochs = epochs(c(1, 10))
)

set.seed(217)
mnl_res <-
mnl_spec %>%
tune_grid(
class ~ .,
three_class_rs,
grid = 2,
param_info = mnl_param)

expect_true(nrow(collect_notes(mnl_res)) == 0)

})
Loading