forked from AmpX-AI/fsql
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Credentials and identity reader (AmpX-AI#18)
* Add configurable credentials * Add identity reader
- Loading branch information
Showing
5 changed files
with
138 additions
and
24 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
import pandas as pd | ||
from pandas.testing import assert_frame_equal | ||
|
||
from fsql.api import read_partitioned_table | ||
from fsql.column_parser import AutoParser | ||
from fsql.deser import IDENTITY_READER | ||
from fsql.query import Q_TRUE | ||
|
||
df1 = pd.DataFrame(data={"c1": [0, 1], "c2": ["hello", "world"]}) | ||
df2 = pd.DataFrame(data={"c1": [2, 3], "c2": ["salve", "mundi"]}) | ||
df3 = pd.DataFrame(data={"c1": [4, 5], "c2": ["cthulhu", "rlyeh"]}) | ||
|
||
|
||
def test_identity_reader(tmp_path): | ||
case1_path = tmp_path / "table1" | ||
case1_path.mkdir(parents=True) | ||
df1.to_csv(case1_path / "f1.csv", index=False) | ||
|
||
case1_result_r = read_partitioned_table(f"file://{case1_path}/", Q_TRUE, data_reader=IDENTITY_READER) | ||
case1_result = list(case1_result_r) | ||
|
||
assert len(case1_result) == 1 | ||
assert case1_result[0].file_url == f"/{case1_path}/f1.csv" | ||
assert case1_result[0].partition_values == {} | ||
|
||
case1_deserd = case1_result[0].consume(pd.read_csv) | ||
assert_frame_equal(df1, case1_deserd) | ||
|
||
case2_path = tmp_path / "table2" | ||
case2_part1 = case2_path / "c3=42" / "c4=test" | ||
case2_part1.mkdir(parents=True) | ||
case2_part2 = case2_path / "c3=43" / "c4=test" | ||
case2_part2.mkdir(parents=True) | ||
case2_part3 = case2_path / "c3=44" / "c4=test" | ||
case2_part3.mkdir(parents=True) | ||
df1.to_csv(case2_part1 / "f1.csv", index=False) | ||
df2.to_csv(case2_part2 / "f2.csv", index=False) | ||
df3.to_csv(case2_part3 / "f3.csv", index=False) | ||
|
||
parser = AutoParser.from_str("c3=[42,43]/c4=[test]") | ||
case2_result_r = read_partitioned_table( | ||
f"file://{case2_path}/", Q_TRUE, column_parser=parser, data_reader=IDENTITY_READER | ||
) | ||
case2_result = list(case2_result_r) | ||
|
||
assert len(case2_result) == 2 | ||
assert case2_result[0].file_url == f"/{case2_path}/c3=42/c4=test/f1.csv" | ||
assert case2_result[1].file_url == f"/{case2_path}/c3=43/c4=test/f2.csv" | ||
assert case2_result[0].partition_values == {"c3": "42", "c4": "test"} | ||
assert case2_result[1].partition_values == {"c3": "43", "c4": "test"} | ||
|
||
case2_deserd1 = case2_result[0].consume(pd.read_csv) | ||
assert_frame_equal(df1, case2_deserd1) | ||
case2_deserd2 = case2_result[1].consume(pd.read_csv) | ||
assert_frame_equal(df2, case2_deserd2) |