Skip to content

trinker/wakefield

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

wakefield

Project Status: Active - The project has reached a stable, usable state and is being actively developed. Build Status Coverage Status DOI

wakefield is designed to quickly generate random data sets. The user passes n (number of rows) and predefined vectors to the r_data_frame function to produce a dplyr::tbl_df object.

Table of Contents

Installation

To download the development version of wakefield:

Download the zip ball or tar ball, decompress and run R CMD INSTALL on it, or use the pacman package to install the development version:

if (!require("pacman")) install.packages("pacman")
pacman::p_load_gh("trinker/wakefield")
pacman::p_load(dplyr, tidyr, ggplot2)

Contact

You are welcome to: * submit suggestions and bug-reports at: https://github.com/trinker/wakefield/issues * send a pull request on: https://github.com/trinker/wakefield/ * compose a friendly e-mail to: tyler.rinker@gmail.com

Demonstration

Getting Started

The r_data_frame function (random data frame) takes n (the number of rows) and any number of variables (columns). These columns are typically produced from a wakefield variable function. Each of these variable functions has a pre-set behavior that produces a named vector of n length, allowing the user to lazily pass unnamed functions (optionally, without call parenthesis). The column name is hidden as a varname attribute. For example here we see the race variable function:

race(n=10)

##  [1] Bi-Racial White     Bi-Racial Native    White     White     White     Asian     White     Hispanic 
## Levels: White Hispanic Black Asian Bi-Racial Native Other Hawaiian

attributes(race(n=10))

## $levels
## [1] "White"     "Hispanic"  "Black"     "Asian"     "Bi-Racial" "Native"    "Other"     "Hawaiian" 
## 
## $class
## [1] "variable" "factor"  
## 
## $varname
## [1] "Race"

When this variable is used inside of r_data_frame the varname is used as a column name. Additionally, the n argument is not set within variable functions but is set once in r_data_frame:

r_data_frame(
    n = 500,
    race
)

## Warning: `tbl_df()` is deprecated as of dplyr 1.0.0.
## Please use `tibble::as_tibble()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.

## # A tibble: 500 x 1
##    Race    
##    <fct>   
##  1 White   
##  2 White   
##  3 White   
##  4 White   
##  5 Black   
##  6 Black   
##  7 White   
##  8 White   
##  9 Hispanic
## 10 White   
## # ... with 490 more rows

The power of r_data_frame is apparent when we use many modular variable functions:

r_data_frame(
    n = 500,
    id,
    race,
    age,
    sex,
    hour,
    iq,
    height,
    died
)

## # A tibble: 500 x 8
##    ID    Race        Age Sex    Hour        IQ Height Died 
##    <chr> <fct>     <int> <fct>  <times>  <dbl>  <dbl> <lgl>
##  1 001   White        25 Female 00:00:00    93     69 TRUE 
##  2 002   White        80 Male   00:00:00    87     59 FALSE
##  3 003   White        60 Female 00:00:00   119     74 TRUE 
##  4 004   Bi-Racial    54 Female 00:00:00   109     72 FALSE
##  5 005   White        75 Female 00:00:00   106     70 FALSE
##  6 006   White        54 Male   00:00:00    89     67 TRUE 
##  7 007   Hispanic     67 Male   00:00:00    94     73 TRUE 
##  8 008   Bi-Racial    86 Female 00:00:00   100     65 TRUE 
##  9 009   Hispanic     56 Male   00:00:00    92     76 FALSE
## 10 010   Hispanic     52 Female 00:00:00   104     71 FALSE
## # ... with 490 more rows

There are 49 wakefield based variable functions to chose from, spanning R’s various data types (see ?variables for details).

age dice hair military sex\_inclusive
animal dna height month smokes
answer dob income name speed
area dummy internet\_browser normal state
car education iq political string
children employment language race upper
coin eye level religion valid
color grade likert sat year
date\_stamp grade\_level lorem\_ipsum sentence zip\_code
death group marital sex

Available Variable Functions

However, the user may also pass their own vector producing functions or vectors to r_data_frame. Those with an n argument can be set by r_data_frame:

r_data_frame(
    n = 500,
    id,
    Scoring = rnorm,
    Smoker = valid,
    race,
    age,
    sex,
    hour,
    iq,
    height,
    died
)

## # A tibble: 500 x 10
##    ID    Scoring Smoker Race       Age Sex    Hour        IQ Height Died 
##    <chr>   <dbl> <lgl>  <fct>    <int> <fct>  <times>  <dbl>  <dbl> <lgl>
##  1 001    0.833  FALSE  White       20 Female 00:00:00    92     69 TRUE 
##  2 002   -0.529  TRUE   Hispanic    83 Female 00:00:00    99     74 TRUE 
##  3 003   -0.704  TRUE   Hispanic    24 Male   00:00:00   115     62 TRUE 
##  4 004   -0.839  TRUE   Asian       19 Female 00:00:00   113     69 TRUE 
##  5 005    0.606  TRUE   White       70 Male   00:00:00    95     68 FALSE
##  6 006    1.46   FALSE  Other       45 Female 00:00:00   110     78 FALSE
##  7 007   -0.681  TRUE   Black       47 Female 00:00:00    98     64 TRUE 
##  8 008    0.541  FALSE  White       88 Male   00:30:00    75     70 TRUE 
##  9 009   -0.294  FALSE  Hispanic    89 Male   00:30:00   104     63 FALSE
## 10 010    0.0749 FALSE  Hispanic    74 Female 00:30:00   105     69 TRUE 
## # ... with 490 more rows

r_data_frame(
    n = 500,
    id,
    age, age, age,
    grade, grade, grade
)

## # A tibble: 500 x 7
##    ID    Age_1 Age_2 Age_3 Grade_1 Grade_2 Grade_3
##    <chr> <int> <int> <int>   <dbl>   <dbl>   <dbl>
##  1 001      67    24    89    82.4    86.8    90.6
##  2 002      55    76    27    87.3    85.4    89.8
##  3 003      60    61    22    82.2    87      90.1
##  4 004      50    19    56    96.4    86.6    95.6
##  5 005      83    77    71    88.8    87.5    84.4
##  6 006      55    71    76    87.3    96.5    86.5
##  7 007      88    36    75    92.1    91.6    93.4
##  8 008      71    48    81    87.9    91.4    80.9
##  9 009      76    78    21    86.9    93.6    84.3
## 10 010      49    68    47    85.5    93      86.6
## # ... with 490 more rows

While passing variable functions to r_data_frame without call parenthesis is handy, the user may wish to set arguments. This can be done through call parenthesis as we do with data.frame or dplyr::data_frame:

r_data_frame(
    n = 500,
    id,
    Scoring = rnorm,
    Smoker = valid,
    `Reading(mins)` = rpois(lambda=20),  
    race,
    age(x = 8:14),
    sex,
    hour,
    iq,
    height(mean=50, sd = 10),
    died
)

## # A tibble: 500 x 11
##    ID    Scoring Smoker `Reading(mins)` Race       Age Sex    Hour        IQ Height Died 
##    <chr>   <dbl> <lgl>            <int> <fct>    <int> <fct>  <times>  <dbl>  <dbl> <lgl>
##  1 001    2.48   FALSE               10 White        9 Male   00:00:00    93     44 TRUE 
##  2 002    0.566  FALSE               14 Hispanic    10 Male   00:00:00   116     58 FALSE
##  3 003   -0.563  FALSE               19 Hispanic     8 Female 00:00:00    97     64 TRUE 
##  4 004    0.0187 TRUE                19 White        9 Male   00:00:00   104     58 TRUE 
##  5 005   -0.462  FALSE               17 Hispanic    11 Male   00:00:00    96     53 FALSE
##  6 006   -1.13   FALSE               17 White       10 Male   00:00:00    91     66 TRUE 
##  7 007   -0.673  TRUE                15 White       13 Female 00:00:00    99     61 FALSE
##  8 008    0.164  TRUE                22 White       11 Male   00:00:00   106     47 FALSE
##  9 009   -0.227  FALSE               21 White       12 Female 00:00:00   101     54 TRUE 
## 10 010    0.762  TRUE                22 White        8 Male   00:00:00   107     50 FALSE
## # ... with 490 more rows

Random Missing Observations

Often data contains missing values. wakefield allows the user to add a proportion of missing values per column/vector via the r_na (random NA). This works nicely within a dplyr/magrittr %>% then pipeline:

r_data_frame(
    n = 30,
    id,
    race,
    age,
    sex,
    hour,
    iq,
    height,
    died,
    Scoring = rnorm,
    Smoker = valid
) %>%
    r_na(prob=.4)

## # A tibble: 30 x 10
##    ID    Race       Age Sex    Hour        IQ Height Died  Scoring Smoker
##    <chr> <fct>    <int> <fct>  <times>  <dbl>  <dbl> <lgl>   <dbl> <lgl> 
##  1 01    Hispanic    24 Female 01:30:00    92     70 NA     NA     NA    
##  2 02    White       NA Female <NA>        NA     NA FALSE   0.696 TRUE  
##  3 03    Hispanic    NA Female 02:00:00   107     68 FALSE  -0.113 TRUE  
##  4 04    Black       29 Female <NA>        93     75 TRUE   -1.64  TRUE  
##  5 05    <NA>        43 Female 03:30:00    NA     NA NA     -0.705 FALSE 
##  6 06    Black       NA <NA>   04:00:00    93     NA TRUE   NA     NA    
##  7 07    Hispanic    60 <NA>   <NA>        NA     NA TRUE   NA     NA    
##  8 08    Hispanic    NA <NA>   <NA>        NA     NA TRUE   NA     FALSE 
##  9 09    <NA>        34 <NA>   05:30:00    NA     70 NA     -1.44  TRUE  
## 10 10    White       88 <NA>   <NA>        NA     NA NA     NA     NA    
## # ... with 20 more rows

Repeated Measures & Time Series

The r_series function allows the user to pass a single wakefield function and dictate how many columns (j) to produce.

set.seed(10)

r_series(likert, j = 3, n=10)

## # A tibble: 10 x 3
##    Likert_1          Likert_2          Likert_3         
##  * <ord>             <ord>             <ord>            
##  1 Neutral           Agree             Agree            
##  2 Strongly Agree    Strongly Disagree Strongly Agree   
##  3 Agree             Strongly Disagree Agree            
##  4 Disagree          Strongly Disagree Agree            
##  5 Neutral           Strongly Agree    Strongly Agree   
##  6 Agree             Disagree          Disagree         
##  7 Agree             Agree             Strongly Disagree
##  8 Agree             Strongly Disagree Agree            
##  9 Strongly Disagree Agree             Neutral          
## 10 Neutral           Strongly Disagree Neutral

Often the user wants a numeric score for Likert type columns and similar variables. For series with multiple factors the as_integer converts all columns to integer values. Additionally, we may want to specify column name prefixes. This can be accomplished via the variable function’s name argument. Both of these features are demonstrated here.

set.seed(10)

as_integer(r_series(likert, j = 5, n=10, name = "Item"))

## # A tibble: 10 x 5
##    Item_1 Item_2 Item_3 Item_4 Item_5
##     <int>  <int>  <int>  <int>  <int>
##  1      3      4      4      4      5
##  2      5      1      5      3      1
##  3      4      1      4      5      4
##  4      2      1      4      4      5
##  5      3      5      5      2      5
##  6      4      2      2      3      4
##  7      4      4      1      4      1
##  8      4      1      4      1      2
##  9      1      4      3      5      3
## 10      3      1      3      5      5

r_series can be used within a r_data_frame as well.

set.seed(10)

r_data_frame(n=100,
    id,
    age,
    sex,
    r_series(likert, 3, name = "Question")
)

## # A tibble: 100 x 6
##    ID      Age Sex    Question_1        Question_2        Question_3       
##    <chr> <int> <fct>  <ord>             <ord>             <ord>            
##  1 001      26 Male   Strongly Agree    Disagree          Disagree         
##  2 002      72 Male   Disagree          Agree             Strongly Disagree
##  3 003      89 Male   Strongly Disagree Strongly Disagree Strongly Agree   
##  4 004      71 Female Agree             Strongly Agree    Disagree         
##  5 005      56 Female Strongly Disagree Disagree          Neutral          
##  6 006      32 Female Strongly Disagree Strongly Agree    Disagree         
##  7 007      32 Female Strongly Disagree Strongly Agree    Strongly Disagree
##  8 008      59 Female Neutral           Strongly Agree    Strongly Disagree
##  9 009      88 Male   Agree             Agree             Agree            
## 10 010      51 Male   Agree             Disagree          Neutral          
## # ... with 90 more rows

set.seed(10)

r_data_frame(n=100,
    id,
    age,
    sex,
    r_series(likert, 5, name = "Item", integer = TRUE)
)

## # A tibble: 100 x 8
##    ID      Age Sex    Item_1 Item_2 Item_3 Item_4 Item_5
##    <chr> <int> <fct>   <int>  <int>  <int>  <int>  <int>
##  1 001      26 Male        5      2      2      4      5
##  2 002      72 Male        2      4      1      4      3
##  3 003      89 Male        1      1      5      4      4
##  4 004      71 Female      4      5      2      1      2
##  5 005      56 Female      1      2      3      3      2
##  6 006      32 Female      1      5      2      5      1
##  7 007      32 Female      1      5      1      1      5
##  8 008      59 Female      3      5      1      4      1
##  9 009      88 Male        4      4      4      3      2
## 10 010      51 Male        4      2      3      1      3
## # ... with 90 more rows

Related Series

The user can also create related series via the relate argument in r_series. It allows the user to specify the relationship between columns. relate may be a named list of or a short hand string of the form of "fM_sd" where:

  • f is one of (+, -, *, /)
  • M is a mean value
  • sd is a standard deviation of the mean value

For example you may use relate = "*4_1". If relate = NULL no relationship is generated between columns. I will use the short hand string form here.

Some Examples With Variation

r_series(grade, j = 5, n = 100, relate = "+1_6")

## # A tibble: 100 x 5
##    Grade_1    Grade_2    Grade_3    Grade_4    Grade_5   
##  * <variable> <variable> <variable> <variable> <variable>
##  1 90.0       98.7        98.6      104.6      114.1     
##  2 96.3       97.9        98.4      102.7      103.9     
##  3 96.6       92.6        94.9       92.7       98.8     
##  4 84.5       89.5        81.9       87.4       83.4     
##  5 86.8       84.1        82.2       82.8       94.0     
##  6 82.1       77.9        74.3       76.4       73.0     
##  7 90.9       96.1       107.5      120.2      126.8     
##  8 86.7       88.6        90.3       89.0       83.8     
##  9 86.1       84.1        88.9       90.1       72.6     
## 10 86.4       92.3        88.5       94.6       99.0     
## # ... with 90 more rows

r_series(age, 5, 100, relate = "+5_0")

## # A tibble: 100 x 5
##    Age_1      Age_2      Age_3      Age_4      Age_5     
##  * <variable> <variable> <variable> <variable> <variable>
##  1 83         88         93         98         103       
##  2 48         53         58         63          68       
##  3 80         85         90         95         100       
##  4 46         51         56         61          66       
##  5 33         38         43         48          53       
##  6 53         58         63         68          73       
##  7 34         39         44         49          54       
##  8 31         36         41         46          51       
##  9 81         86         91         96         101       
## 10 50         55         60         65          70       
## # ... with 90 more rows

r_series(likert, 5,  100, name ="Item", relate = "-.5_.1")

## # A tibble: 100 x 5
##    Item_1 Item_2 Item_3 Item_4 Item_5
##  *  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1      1      0     -1     -1     -2
##  2      3      3      2      2      2
##  3      4      3      3      3      3
##  4      3      2      1      0      0
##  5      3      3      3      3      3
##  6      5      4      3      2      1
##  7      4      3      2      1      1
##  8      1      0     -1     -2     -2
##  9      3      2      1      1      1
## 10      1      0      0     -1     -2
## # ... with 90 more rows

r_series(grade, j = 5, n = 100, relate = "*1.05_.1")

## # A tibble: 100 x 5
##    Grade_1    Grade_2    Grade_3    Grade_4    Grade_5   
##  * <variable> <variable> <variable> <variable> <variable>
##  1 90.8       90.80       99.880    109.8680   109.8680  
##  2 89.8       80.82       80.820     64.6560    58.1904  
##  3 90.3       99.33      109.263    109.2630    98.3367  
##  4 95.2       76.16       91.392     91.3920   100.5312  
##  5 89.1       98.01      117.612    105.8508   105.8508  
##  6 86.8       95.48       95.480    114.5760   160.4064  
##  7 93.4       93.40       93.400    102.7400   123.2880  
##  8 92.7       83.43       91.773    110.1276   121.1404  
##  9 84.9       93.39       93.390    102.7290   113.0019  
## 10 84.7       84.70       93.170     93.1700   111.8040  
## # ... with 90 more rows

Adjust Correlations

Use the sd command to adjust correlations.

round(cor(r_series(grade, 8, 10, relate = "+1_2")), 2)

##         Grade_1 Grade_2 Grade_3 Grade_4 Grade_5 Grade_6 Grade_7 Grade_8
## Grade_1    1.00    0.84    0.57    0.41    0.31    0.30    0.16    0.15
## Grade_2    0.84    1.00    0.86    0.73    0.71    0.70    0.52    0.50
## Grade_3    0.57    0.86    1.00    0.93    0.92    0.90    0.77    0.71
## Grade_4    0.41    0.73    0.93    1.00    0.93    0.89    0.76    0.66
## Grade_5    0.31    0.71    0.92    0.93    1.00    0.93    0.83    0.79
## Grade_6    0.30    0.70    0.90    0.89    0.93    1.00    0.93    0.92
## Grade_7    0.16    0.52    0.77    0.76    0.83    0.93    1.00    0.95
## Grade_8    0.15    0.50    0.71    0.66    0.79    0.92    0.95    1.00

round(cor(r_series(grade, 8, 10, relate = "+1_0")), 2)

##         Grade_1 Grade_2 Grade_3 Grade_4 Grade_5 Grade_6 Grade_7 Grade_8
## Grade_1       1       1       1       1       1       1       1       1
## Grade_2       1       1       1       1       1       1       1       1
## Grade_3       1       1       1       1       1       1       1       1
## Grade_4       1       1       1       1       1       1       1       1
## Grade_5       1       1       1       1       1       1       1       1
## Grade_6       1       1       1       1       1       1       1       1
## Grade_7       1       1       1       1       1       1       1       1
## Grade_8       1       1       1       1       1       1       1       1

round(cor(r_series(grade, 8, 10, relate = "+1_20")), 2)

##         Grade_1 Grade_2 Grade_3 Grade_4 Grade_5 Grade_6 Grade_7 Grade_8
## Grade_1    1.00   -0.11    0.14   -0.21   -0.42   -0.29   -0.30   -0.27
## Grade_2   -0.11    1.00    0.49    0.44    0.18    0.24    0.23    0.51
## Grade_3    0.14    0.49    1.00    0.86    0.48    0.59    0.70    0.81
## Grade_4   -0.21    0.44    0.86    1.00    0.63    0.76    0.76    0.87
## Grade_5   -0.42    0.18    0.48    0.63    1.00    0.92    0.85    0.79
## Grade_6   -0.29    0.24    0.59    0.76    0.92    1.00    0.91    0.89
## Grade_7   -0.30    0.23    0.70    0.76    0.85    0.91    1.00    0.93
## Grade_8   -0.27    0.51    0.81    0.87    0.79    0.89    0.93    1.00

round(cor(r_series(grade, 8, 10, relate = "+15_20")), 2)

##         Grade_1 Grade_2 Grade_3 Grade_4 Grade_5 Grade_6 Grade_7 Grade_8
## Grade_1    1.00    0.48    0.47    0.63    0.58    0.66    0.35    0.18
## Grade_2    0.48    1.00    0.90    0.87    0.54    0.43    0.67    0.23
## Grade_3    0.47    0.90    1.00    0.81    0.63    0.53    0.74    0.30
## Grade_4    0.63    0.87    0.81    1.00    0.75    0.72    0.71    0.47
## Grade_5    0.58    0.54    0.63    0.75    1.00    0.88    0.57    0.42
## Grade_6    0.66    0.43    0.53    0.72    0.88    1.00    0.68    0.54
## Grade_7    0.35    0.67    0.74    0.71    0.57    0.68    1.00    0.77
## Grade_8    0.18    0.23    0.30    0.47    0.42    0.54    0.77    1.00

Visualize the Relationship

dat <- r_data_frame(12,
    name,
    r_series(grade, 100, relate = "+1_6")
) 

dat %>%
    gather(Time, Grade, -c(Name)) %>%
    mutate(Time = as.numeric(gsub("\\D", "", Time))) %>%
    ggplot(aes(x = Time, y = Grade, color = Name, group = Name)) +
        geom_line(size=.8) + 
        theme_bw()

Expanded Dummy Coding

The user may wish to expand a factor into j dummy coded columns. The r_dummy function expands a factor into j columns and works similar to the r_series function. The user may wish to use the original factor name as the prefix to the j columns. Setting prefix = TRUE within r_dummy accomplishes this.

set.seed(10)
r_data_frame(n=100,
    id,
    age,
    r_dummy(sex, prefix = TRUE),
    r_dummy(political)
)

## # A tibble: 100 x 8
##    ID      Age Sex_Male Sex_Female Democrat Republican Libertarian Green
##    <chr> <int>    <int>      <int>    <int>      <int>       <int> <int>
##  1 001      26        1          0        0          0           1     0
##  2 002      72        1          0        1          0           0     0
##  3 003      89        1          0        0          1           0     0
##  4 004      71        0          1        1          0           0     0
##  5 005      56        0          1        0          1           0     0
##  6 006      32        0          1        0          1           0     0
##  7 007      32        0          1        1          0           0     0
##  8 008      59        0          1        0          1           0     0
##  9 009      88        1          0        0          1           0     0
## 10 010      51        1          0        0          1           0     0
## # ... with 90 more rows

Visualizing Column Types

It is helpful to see the column types and NAs as a visualization. The table_heat (also the plot method assigned to tbl_df as well) can provide visual glimpse of data types and missing cells.

set.seed(10)

r_data_frame(n=100,
    id,
    dob,
    animal,
    grade, grade,
    death,
    dummy,
    grade_letter,
    gender,
    paragraph,
    sentence
) %>%
   r_na() %>%
   plot(palette = "Set1")