-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathgenerate_jackalsimulator_solver.py
141 lines (98 loc) · 5.42 KB
/
generate_jackalsimulator_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/python3
import os
import sys
import numpy as np
sys.path.append(os.path.join(sys.path[0], "..", "..", "solver_generator"))
sys.path.append(os.path.join(sys.path[0], "..", "..", "mpc_planner_modules", "scripts"))
# SET YOUR FORCES PATH HERE (can also be in PYTHONPATH)
forces_path = os.path.join(os.path.expanduser("~"), "forces_pro_client")
sys.path.append(forces_path)
from util.files import load_settings, get_current_package
from control_modules import ModuleManager
from generate_solver import generate_solver
# Import modules here from mpc_planner_modules
from mpc_base import MPCBaseModule
from contouring import ContouringModule
from curvature_aware_contouring import CurvatureAwareContouringModule
from goal_module import GoalModule
from path_reference_velocity import PathReferenceVelocityModule
from ellipsoid_constraints import EllipsoidConstraintModule
from gaussian_constraints import GaussianConstraintModule
from guidance_constraints import GuidanceConstraintModule
from linearized_constraints import LinearizedConstraintModule
from scenario_constraints import ScenarioConstraintModule
# Import solver models that you want to use
from solver_model import ContouringSecondOrderUnicycleModel, ContouringSecondOrderUnicycleModelWithSlack
from solver_model import ContouringSecondOrderUnicycleModelCurvatureAware
def configuration_no_obstacles(settings):
modules = ModuleManager()
model = ContouringSecondOrderUnicycleModel()
# You can manually set state/input bounds
# lower_bound = [-2.0, -0.8, -2000.0, -2000.0, -np.pi * 2, -1.0, -1.0]
# upper_bound = [2.0, 0.8, 2000.0, 2000.0, np.pi * 2, 3.0, 10000.0]
# model.set_bounds(lower_bound, upper_bound)
base_module = modules.add_module(MPCBaseModule(settings))
base_module.weigh_variable(var_name="a", weight_names="acceleration") # w_a * ||a||_2^2
base_module.weigh_variable(var_name="w", weight_names="angular_velocity") # w_w * ||w||_2^2
if not settings["contouring"]["dynamic_velocity_reference"]:
base_module.weigh_variable(var_name="v",
weight_names=["velocity", "reference_velocity"],
cost_function=lambda x, w: w[0] * (x-w[1])**2) # w_v * ||v - v_ref||_2^2
modules.add_module(ContouringModule(settings)) # Contouring costs
if settings["contouring"]["dynamic_velocity_reference"]:
modules.add_module(PathReferenceVelocityModule(settings)) # Possibly adaptive v_ref
return model, modules
def configuration_basic(settings):
model, modules = configuration_no_obstacles(settings)
modules.add_module(EllipsoidConstraintModule(settings))
return model, modules
def configuration_safe_horizon(settings):
modules = ModuleManager()
model = ContouringSecondOrderUnicycleModelWithSlack()
# Module that allows for penalization of variables
base_module = modules.add_module(MPCBaseModule(settings))
# Penalize ||a||_2^2 and ||w||_2^2
base_module.weigh_variable(var_name="a", weight_names="acceleration")
base_module.weigh_variable(var_name="w", weight_names="angular_velocity")
base_module.weigh_variable(var_name="slack", weight_names="slack", rqt_max_value=10000.0)
if not settings["contouring"]["dynamic_velocity_reference"]:
base_module.weigh_variable(var_name="v",
weight_names=["velocity", "reference_velocity"],
cost_function=lambda x, w: w[0] * (x-w[1])**2) # w_v * ||v - v_ref||_2^2
modules.add_module(ContouringModule(settings)) # Contouring costs
if settings["contouring"]["dynamic_velocity_reference"]:
modules.add_module(PathReferenceVelocityModule(settings)) # Possibly adaptive v_ref
modules.add_module(ScenarioConstraintModule(settings))
return model, modules
def configuration_tmpc(settings):
model, modules = configuration_no_obstacles(settings)
modules.add_module(GuidanceConstraintModule(
settings,
constraint_submodule=EllipsoidConstraintModule # This configures the obstacle avoidance used in each planner
))
# modules.add_module(GuidanceConstraintModule(settings, constraint_submodule=GaussianConstraintModule))
return model, modules
def configuration_lmpcc(settings):
modules = ModuleManager()
model = ContouringSecondOrderUnicycleModel()
# Penalize ||a||_2^2 and ||w||_2^2
base_module = modules.add_module(MPCBaseModule(settings))
base_module.weigh_variable(var_name="a", weight_names="acceleration")
base_module.weigh_variable(var_name="w", weight_names="angular_velocity")
# modules.add_module(ContouringModule(settings))
modules.add_module(GoalModule(settings))
modules.add_module(PathReferenceVelocityModule(settings))
modules.add_module(EllipsoidConstraintModule(settings))
return model, modules
settings = load_settings()
# model, modules = configuration_basic(settings)
# model, modules = configuration_no_obstacles(settings)
# NOTE: LMPCC - basic MPC with deterministic obstacle avoidance
# model, modules = configuration_lmpcc(settings)
# NOTE: T-MPC - Parallelized MPC optimizing trajectories with several distinct passing behaviors.
model, modules = configuration_tmpc(settings)
# NOTE: SH-MPC - MPC incorporating non Gaussian uncertainty in obstacle motion.
# More configuration parameters in `scenario_module/config/params.yaml`
# model, modules = configuration_safe_horizon(settings)
generate_solver(modules, model, settings)
exit(0)