Skip to content

Fusion of sequence, structure and feature information to improve protein solubility prediction (IEEE BIBM 2024).

License

Notifications You must be signed in to change notification settings

tyang816/ProtSolM

Repository files navigation

ProtSolM: Protein Solubility Prediction with Multi-modal Features

🚀 Introduction (Venus-ProtSolM/ ProtSolM)

Fusion of sequence, structure and feature information to improve protein solubility prediction!

architecture

📑 Results

News

Paper Results

result

Downloads

PDBSol and ExternalTest pdb files can be found at https://huggingface.co/datasets/tyang816/ProtSolM_ESMFold_PDB.

The labels are stored in CSV files which can be found at data/PDBSol and data/ExternalTest.

cd data/PDBSol
wget https://huggingface.co/datasets/tyang816/ProtSolM_ESMFold_PDB/blob/main/ExternalTest_ESMFold_PDB.zip
unzip PDBSol_ESMFold_PDB.zip

cd data/ExternalTest
wget https://huggingface.co/datasets/tyang816/ProtSolM_ESMFold_PDB/blob/main/ExternalTest_ESMFold_PDB.zip
unzip ExternalTest_ESMFold_PDB.zip

🛫 Requirement

Please make sure you have installed Anaconda3 or Miniconda3.

conda env create -f environment.yaml
conda activate protsolm

🧬 Prediction Solubility with ProtSolM

Download Pre-trained Checkpoints

We use the pre-trained checkpoints from ProtSSN, we recommend using k20_h512 for fine-tuning on downstream tasks.

# Version # Param # Link
k10_h512 148 https://huggingface.co/tyang816/ProtSSN/resolve/main/protssn_k10_h512.pt
k10_h768 160 https://huggingface.co/tyang816/ProtSSN/resolve/main/protssn_k10_h768.pt
k10_h1280 184 https://huggingface.co/tyang816/ProtSSN/resolve/main/protssn_k10_h1280.pt
k20_h512 148 https://huggingface.co/tyang816/ProtSSN/resolve/main/protssn_k20_h512.pt
k20_h768 160 https://huggingface.co/tyang816/ProtSSN/resolve/main/protssn_k20_h768.pt
k20_h1280 184 https://huggingface.co/tyang816/ProtSSN/resolve/main/protssn_k20_h1280.pt
k30_h512 148 https://huggingface.co/tyang816/ProtSSN/resolve/main/protssn_k30_h512.pt
k30_h768 160 https://huggingface.co/tyang816/ProtSSN/resolve/main/protssn_k30_h768.pt
k30_h1280 184 https://huggingface.co/tyang816/ProtSSN/resolve/main/protssn_k30_h1280.pt
mkdir model
cd model
wget https://huggingface.co/tyang816/ProtSSN/resolve/main/protssn_k20_h512.pt

PDBSol benchmark

Extract Features

python get_feature.py \
    --pdb_dir data/PDBSol/esmfold_pdb \
    --out_file data/PDBSol_feature.csv

Start Testing

Script example can be found at script/.

python eval.py \
    --supv_dataset data/PDBSol \
    --test_file data/PDBSol/test.csv \
    --test_result_dir result/protssn_k20_h512/PDBSol \
    --feature_file data/PDBSol/PDBSol_feature.csv \
    --feature_name "aa_composition" "gravy" "ss_composition" "hygrogen_bonds" "exposed_res_fraction" "pLDDT" \
    --use_plddt_penalty \
    --batch_token_num 3000

Your own dataset

What you need at least

  • pdb files directory (e.g. data/<YourDataset>/pdb).
  • a csv file (e.g. data/<YourDataset>/test.csv) with the following columns: name, aa_seq, label, if you don't have labels, you can use 0 to replace them.

Extract Features

dataset_name=<YourDataset>
python get_feature.py \
    --pdb_dir data/$dataset_name/pdb \
    --out_file data/$dataset_name/"$dataset_name"_feature.csv

Start Testing

The result will be saved in result/$dataset_name

python eval.py \
    --supv_dataset data/$dataset_name \
    --test_file data/$dataset_name/test.csv \
    --test_result_dir result/$dataset_name \
    --feature_file data/$dataset_name/"$dataset_name"_feature.csv \
    --feature_name "aa_composition" "gravy" "ss_composition" "hygrogen_bonds" "exposed_res_fraction" "pLDDT" \
    --use_plddt_penalty \
    --batch_token_num 3000

Start Fine-tuning

Script example can be found at script/.

K=20
H=512
pooling_method=attention1d
model_name=feature_"$pooling_method"_k"$K"_h"$H"
CUDA_VISIBLE_DEVICES=0 python run_ft.py \
    --seed 3407 \
    --gnn_hidden_dim $H \
    --gnn_model_path model/protssn_k"$K"_h"$H".pt \
    --pooling_method $pooling_method \
    --model_dir result/sol/debug/protssn_k"$K"_h"$H" \
    --model_name $model_name.pt \
    --num_labels 2 \
    --supv_dataset data/PDBSol \
    --train_file data/PDBSol/train.csv \
    --valid_file data/PDBSol/valid.csv \
    --test_file data/PDBSol/test.csv \
    --feature_file data/PDBSol/PDBSol_feature.csv \
    --feature_name "aa_composition" "gravy" "ss_composition" "hygrogen_bonds" "exposed_res_fraction" "pLDDT" \
    --c_alpha_max_neighbors $K \
    --learning_rate 5e-4 \
    --num_train_epochs 10 \
    --batch_token_num 16000 \
    --gradient_accumulation_steps 1 \
    --patience 3 \
    --wandb \
    --wandb_entity ty_ang \
    --wandb_project protssn-sol_debug \
    --wandb_run_name $model_name

🙌 Citation

Please cite our work if you have used our code or data. We are pleased to see improvements in the subsequent work.

@article{tan2024protsolm,
  title={ProtSolM: Protein Solubility Prediction with Multi-modal Features},
  author={Tan, Yang and Zheng, Jia and Hong, Liang and Zhou, Bingxin},
  journal={arXiv preprint arXiv:2406.19744},
  year={2024}
}

About

Fusion of sequence, structure and feature information to improve protein solubility prediction (IEEE BIBM 2024).

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published