Skip to content

The Code for Paper "SRFFNet:Self-refine, Fusion, Feedback for Salient Object Detection".

License

Notifications You must be signed in to change notification settings

user-wu/SRFFNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

81 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

by Shuang Wu, Guangjian Zhang

the Paper has been accepted by《Cognitive Computation》.

Prerequisites

  • Python 3.7
  • Pytorch 1.7
  • OpenCV 4.0
  • Numpy 1.15
  • TensorboardX
  • Apex

Test Demo

Fast Test Demo

Clone repository

git clone https://github.com/user-wu/SRFFNet.git
cd SRFFNet/

Download dataset

Download the following datasets and unzip them into data folder

Directory Structure

 data --------------------------
      |-DUTS        -image/
      |             -mask/
      |             -test.txt
      |             -train.txt
      --------------------------
      |-DUT-OMRON   -image/
      |             -mask/
      |             -test.txt
      --------------------------
      |-ECSSD       -image/
      |             -mask/
      |             -test.txt
      --------------------------
      |-HKU-IS      -image/
      |             -mask/
      |             -test.txt
      --------------------------
      |-PASCAL-S    -image/
      |             -mask/
      |             -test.txt
      --------------------------

Download model

  • If you want to test the performance of SRFFNet, please download the model into out folder
  • If you want to train your own model, please download the pretrained model into res folder

Training

cd src/
python train.py
  • ResNet-50 is used as the backbone of SRFFNet and DUTS-TR is used to train the model
  • batch=32, lr=0.05, momen=0.9, decay=5e-4, epoch=32
  • Warm-up and linear decay strategies are used to change the learning rate lr
  • After training, the result models will be saved in out folder

Testing

cd src
python test.py
  • After testing, saliency maps of PASCAL-S, ECSSD, HKU-IS, DUT-OMRON, DUTS-TE will be saved in eval/maps/ folder.
  • Trained model: model
  • Saliency maps for reference: saliency maps

Citation

  • If you find this work is helpful, please cite our paper
@article{wu2023srffnet,
  title={SRFFNet: Self-refine, Fusion and Feedback for Salient Object Detection},
  author={Wu, Shuang and Zhang, Guangjian},
  journal={Cognitive Computation},
  pages={1--13},
  year={2023},
  publisher={Springer}
}

About

The Code for Paper "SRFFNet:Self-refine, Fusion, Feedback for Salient Object Detection".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages