Skip to content

Commit

Permalink
Create publication page for GEPS
Browse files Browse the repository at this point in the history
  • Loading branch information
yuan-yin authored Nov 21, 2024
1 parent 728ac33 commit 205a0a5
Showing 1 changed file with 76 additions and 0 deletions.
76 changes: 76 additions & 0 deletions _publications/2024_geps.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
---
layout: publication
title: "GEPS: Boosting Generalization in Parametric PDE Neural Solvers through Adaptive Conditioning"
image:
hide: true
category: [generalization, dynamics, prediction]
authors: Armand Kassaï Koupaï, Jorge Mifsut-Benet, Yuan Yin, Jean-Noël Vittaut, Patrick Gallinari
venue: NeurIPS
venue_long: Conference on Neural Information Processing Systems
year: 2024
month: 12
code_url: https://github.com/itsakk/geps
paper_url: https://arxiv.org/abs/2410.23889
blog_url: https://geps-project.github.io
slides_url:
bib_url:
permalink: /publications/geps/
---

<h1 align="center"> {{page.title}} </h1>
<!-- Simple call of authors -->
<!-- <h3 align="center"> {{page.authors}} </h3> -->
<!-- Alternatively you can add links to author pages -->
<h3 align="center"> <a href="https://itsakk.github.io/">Armand Kassaï Koupaï</a> &nbsp;&nbsp; <a href="https://www.isir.upmc.fr/personnel/mifsutbenet/">Jorge Mifsut-Benet</a> &nbsp;&nbsp; <a href="https://yuan-yin.github.io">Yuan Yin</a> &nbsp;&nbsp; <a href="https://webia.lip6.fr/~vittaut/">Jean-Noël Vittaut</a> &nbsp;&nbsp; <a href="https://pages.isir.upmc.fr/gallinari/">Patrick Gallinari</a>


<h3 align="center"> {{page.venue}} {{page.year}} </h3>

<div align="center">
<p>
{% if page.paper_url %}
<a href="{{ page.paper_url }}"><i class="far fa-file-pdf"></i> Paper</a>&nbsp;&nbsp;
{% endif %}
{% if page.code_url %}
<a href="{{ page.code_url }}"><i class="fab fa-github"></i> Code</a> &nbsp;&nbsp;
{% endif %}
{% if page.blog_url %}
<a href="{{ page.blog_url }}"><i class="fab fa-blogger"></i> Blog</a> &nbsp;&nbsp;
{% endif %}
{% if page.slides_url %}
<a href="{{ page.slides_url }}"><i class="far fa-file-pdf"></i> Slides</a>&nbsp;&nbsp;
{% endif %}
{% if page.bib_url %}
<a href="{{ page.bib_url}}"><i class="far fa-file-alt"></i> BibTeX</a>&nbsp;&nbsp;
{% endif %}
</p>
</div>


<div class="publication-teaser">
<img src="../../{{ page.image }}" alt="project teaser"/>
</div>


<hr>

<h2 align="center"> Abstract</h2>

<p align="justify">Solving parametric partial differential equations (PDEs) presents significant challenges for data-driven methods due to the sensitivity of spatio-temporal dynamics to variations in PDE parameters. Machine learning approaches often struggle to capture this variability. To address this, data-driven approaches learn parametric PDEs by sampling a very large variety of trajectories with varying PDE parameters. We first show that incorporating conditioning mechanisms for learning parametric PDEs is essential and that among them, \textit{adaptive conditioning}, allows stronger generalization. As existing adaptive conditioning methods do not scale well with respect to the number of PDE parameters, we propose GEPS, a simple adaptation mechanism to boost GEneralization in Pde Solvers via a first-order optimization and low-rank rapid adaptation of a small set of context parameters. We demonstrate the versatility of our approach for both fully data-driven and for physics-aware neural solvers. Validation performed on a whole range of spatio-temporal forecasting problems demonstrates excellent performance for generalizing to unseen conditions including initial conditions, PDE coefficients, forcing terms and solution domain.</p>

<hr>
<hr>

<h2 align="center">BibTeX</h2>
<left>
<pre class="bibtex-box">
@inproceedings{kassai2024geps,
title={GEPS: Boosting Generalization in Parametric PDE Neural Solvers through Adaptive Conditioning},
author={Kassaï Koupaï, Armand and Mifsut Benet, Jorge and Vittaut, Jean-Noël and Gallinari, Patrick},
booktitle={38th Conference on Neural Information Processing Systems (NeurIPS 2024)},
year={2024}
}
</pre>
</left>

<br>

0 comments on commit 205a0a5

Please sign in to comment.