-
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
76 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
--- | ||
layout: publication | ||
title: "GEPS: Boosting Generalization in Parametric PDE Neural Solvers through Adaptive Conditioning" | ||
image: | ||
hide: true | ||
category: [generalization, dynamics, prediction] | ||
authors: Armand Kassaï Koupaï, Jorge Mifsut-Benet, Yuan Yin, Jean-Noël Vittaut, Patrick Gallinari | ||
venue: NeurIPS | ||
venue_long: Conference on Neural Information Processing Systems | ||
year: 2024 | ||
month: 12 | ||
code_url: https://github.com/itsakk/geps | ||
paper_url: https://arxiv.org/abs/2410.23889 | ||
blog_url: https://geps-project.github.io | ||
slides_url: | ||
bib_url: | ||
permalink: /publications/geps/ | ||
--- | ||
|
||
<h1 align="center"> {{page.title}} </h1> | ||
<!-- Simple call of authors --> | ||
<!-- <h3 align="center"> {{page.authors}} </h3> --> | ||
<!-- Alternatively you can add links to author pages --> | ||
<h3 align="center"> <a href="https://itsakk.github.io/">Armand Kassaï Koupaï</a> <a href="https://www.isir.upmc.fr/personnel/mifsutbenet/">Jorge Mifsut-Benet</a> <a href="https://yuan-yin.github.io">Yuan Yin</a> <a href="https://webia.lip6.fr/~vittaut/">Jean-Noël Vittaut</a> <a href="https://pages.isir.upmc.fr/gallinari/">Patrick Gallinari</a> | ||
|
||
|
||
<h3 align="center"> {{page.venue}} {{page.year}} </h3> | ||
|
||
<div align="center"> | ||
<p> | ||
{% if page.paper_url %} | ||
<a href="{{ page.paper_url }}"><i class="far fa-file-pdf"></i> Paper</a> | ||
{% endif %} | ||
{% if page.code_url %} | ||
<a href="{{ page.code_url }}"><i class="fab fa-github"></i> Code</a> | ||
{% endif %} | ||
{% if page.blog_url %} | ||
<a href="{{ page.blog_url }}"><i class="fab fa-blogger"></i> Blog</a> | ||
{% endif %} | ||
{% if page.slides_url %} | ||
<a href="{{ page.slides_url }}"><i class="far fa-file-pdf"></i> Slides</a> | ||
{% endif %} | ||
{% if page.bib_url %} | ||
<a href="{{ page.bib_url}}"><i class="far fa-file-alt"></i> BibTeX</a> | ||
{% endif %} | ||
</p> | ||
</div> | ||
|
||
|
||
<div class="publication-teaser"> | ||
<img src="../../{{ page.image }}" alt="project teaser"/> | ||
</div> | ||
|
||
|
||
<hr> | ||
|
||
<h2 align="center"> Abstract</h2> | ||
|
||
<p align="justify">Solving parametric partial differential equations (PDEs) presents significant challenges for data-driven methods due to the sensitivity of spatio-temporal dynamics to variations in PDE parameters. Machine learning approaches often struggle to capture this variability. To address this, data-driven approaches learn parametric PDEs by sampling a very large variety of trajectories with varying PDE parameters. We first show that incorporating conditioning mechanisms for learning parametric PDEs is essential and that among them, \textit{adaptive conditioning}, allows stronger generalization. As existing adaptive conditioning methods do not scale well with respect to the number of PDE parameters, we propose GEPS, a simple adaptation mechanism to boost GEneralization in Pde Solvers via a first-order optimization and low-rank rapid adaptation of a small set of context parameters. We demonstrate the versatility of our approach for both fully data-driven and for physics-aware neural solvers. Validation performed on a whole range of spatio-temporal forecasting problems demonstrates excellent performance for generalizing to unseen conditions including initial conditions, PDE coefficients, forcing terms and solution domain.</p> | ||
|
||
<hr> | ||
<hr> | ||
|
||
<h2 align="center">BibTeX</h2> | ||
<left> | ||
<pre class="bibtex-box"> | ||
@inproceedings{kassai2024geps, | ||
title={GEPS: Boosting Generalization in Parametric PDE Neural Solvers through Adaptive Conditioning}, | ||
author={Kassaï Koupaï, Armand and Mifsut Benet, Jorge and Vittaut, Jean-Noël and Gallinari, Patrick}, | ||
booktitle={38th Conference on Neural Information Processing Systems (NeurIPS 2024)}, | ||
year={2024} | ||
} | ||
</pre> | ||
</left> | ||
|
||
<br> |