Skip to content

πŸ•β€πŸ¦ΊπŸ’« Use a Stardog triplestore to create Virtual Knowledge Graphs

License

Notifications You must be signed in to change notification settings

vemonet/stardog-demo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

30 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ•β€πŸ¦ΊπŸ’« Create a Virtual Knowledge Graph with Stardog

Repository to demo how to create a Virtual Knowledge Graph in a Stardog triplestore using data from a PostgreSQL database.

For this demo we use the MIMIC-IV dataset, more details and request access at https://physionet.org/content/mimiciv/2.2/

➑️ Access IDS Stardog

  1. Go to https://cloud.stardog.com

  2. Connect with your Google account (or any other option)

  3. Create a New Connection for the Stardog server deployed at IDS

    1. Provide the username and password you were given by the IDS Stardog admin (Vincent probably)
    2. And the IDS Stardog server endpoint URL: https://stardog.137.120.31.102.nip.io
  4. You can now connect to IDS server, create database, create model, etc

In the future you will just need to reconnect to https://cloud.stardog.com with your Google account, and access IDS Stardog server from there (it will save your connections credentials)

Stardog proposes 3 main interfaces to manage your knowledge graphs:

  • Studio to query and navigate your KG
  • Designer to define models
  • Explorer to do full text searches

βš›οΈ Create a Virtual Knowledge Graph

To federate multiple SQL databases

πŸ”Œ Create the data sources in Stardog Studio

Go to the Data tab in Stardog Studio, and click the + button to add a data source.

Add PostgreSQL database sources for cohort 1 and 2:

  1. Data Source Type: PostgreSQL

  2. JDBC Connection URL (use postgres-mimic-iv-2 for cohort 2):

    jdbc:postgresql://postgres-mimic-iv:5432/mimic_iv
    
  3. JDBC username is postgres, and the password is the one you defined (or passwordtochange if you kept the default)

  4. Driver Class: keep org.postgresql.Driver

Add MariaDB database source for cohort 2:

Alternatively you could also use MariaDB instead of PostgreSQL for cohort 2:

  1. Data Source Type: MariaDB

  2. JDBC Connection URL:

    jdbc:mariadb://mariadb-mimic-iv:3306/mimic_iv
    
  3. JDBC username is root, and the password is the one you defined (or passwordtochange if you kept the default),

  4. Driver Class: ⚠️ change to org.mariadb.jdbc.Driver

ℹ️ Build scripts are available to load MIMIC-IV in various DBMS: https://github.com/MIT-LCP/mimic-code/tree/main/mimic-iv/buildmimic


🧢 Create the model

Go to the Models tab in Stardog Studio.

Add classes with their properties from the OMOP Common Data Model, e.g. Patient, Death

Through this interface you can browse the model through a tree view, and edit the model ontology as turtle RDF, making it easier if you need to import an existing ontology.

Validation that the data complies with the model can be set using SHACL: https://docs.stardog.com/data-quality-constraints

Model creation and mapping can also be done through the Stardog Designer interface, it offers limited customization of the mappings and model, but can be helpful to pre-generate mappings that are then improved manually in Stardog Studio

To create a new model and mappings manually:

  • Create classes and properties of the model

  • Create a new project resource > New Virtual Graph > PostgreSQL

    • Select the patients table if the option is available,

    • Otherwise provide the following custom SQL query to retrieve the patients table:

      SELECT * FROM patients
  • Provide a name for the resource, such as cohort1,and click create

  • On the canvas click the newly created resource, and click Add mapping to map it to the Patient model

  • In the mapping interface connect the 3 properties of our Patient to the right columns in the SQL table.

Finally publish your model to the database of your choice in Stardog


πŸ—ΊοΈ Define the mappings

In the Virtual Graphs tab in Stardog Studio

Mappings in Stardog is done using the Stardog Mapping Syntax (SMS).

Here we provide an example of mappings from a patients.csv file to a Person, and it's Death, if recorded.

Mapping from patients to the Person class, converting the gender from M/F to 0/1 to comply with the OMOP CDM:

# Map patients to persons
PREFIX omop-cdm: <tag:stardog:designer:omop-cdm:model:>
MAPPING
FROM SQL {
  SELECT *, (CASE "gender"
    WHEN 'M' THEN '0'
    WHEN 'F' THEN '1'
  END) AS gender_id FROM patients
}
TO {
  ?Person_iri a omop-cdm:Person ;
    omop-cdm:year_of_birth ?anchor_year_integer_field ;
    omop-cdm:gender_concept_id ?gender_integer_field ;
    omop-cdm:id ?subject_id_integer_field .
}
WHERE {
  BIND(TEMPLATE("tag:stardog:designer:omop-cdm:data:Person:{subject_id}") AS ?Person_iri)
  BIND(StrDt(?anchor_year, <http://www.w3.org/2001/XMLSchema#integer>) AS ?anchor_year_integer_field)
  BIND(StrDt(?gender_id, <http://www.w3.org/2001/XMLSchema#integer>) AS ?gender_integer_field)
  BIND(StrDt(?subject_id, <http://www.w3.org/2001/XMLSchema#integer>) AS ?subject_id_integer_field)
}

Mapping from patients to the Death class, we only create Death entities when a dod is present:

# Map patients to deaths
PREFIX omop-cdm: <tag:stardog:designer:omop-cdm:model:>
MAPPING
FROM SQL {
  SELECT * FROM patients WHERE dod IS NOT NULL
}
TO {
  ?Death_iri a omop-cdm:Death ;
    omop-cdm:death_date ?dod_date_field .

  ?Death_iri omop-cdm:person_id ?Person_iri .
}
WHERE {
  BIND(TEMPLATE("tag:stardog:designer:omop-cdm:data:Person:{subject_id}") AS ?Person_iri)
  BIND(TEMPLATE("tag:stardog:designer:omop-cdm:data:Death:{subject_id}") AS ?Death_iri)
  BIND(StrDt(?dod, <http://www.w3.org/2001/XMLSchema#date>) AS ?dod_date_field)
}

πŸ’¬ Query the virtual graphs in Stardog Studio

Go to the Workspace tab in Stardog Studio

Or directly query the SPARQL endpoint at https://stardog.137.120.31.102.nip.io/icare4cvd

Query all virtual graphs with SPARQL:

SELECT *
FROM stardog:context:virtual
WHERE {
    ?s ?p ?o .
} LIMIT 10000

You can also use stardog:context:all to query all materialized and virtual graphs.

Query a specific virtual graph using its name:

SELECT *
WHERE {
  GRAPH <virtual://virtual_graph_name> {
    ?s ?p ?o .
  }
} LIMIT 10000

Get all persons:

SELECT DISTINCT ?id ?gender ?year_of_birth ?death_date
FROM stardog:context:virtual
WHERE {
    ?s a omop-cdm:Person ;
        omop-cdm:id ?id ;
        omop-cdm:gender_concept_id ?gender ;
        omop-cdm:year_of_birth ?year_of_birth .
    OPTIONAL {
        ?death omop-cdm:person_id ?s ;
               omop-cdm:death_date ?death_date
    }

} LIMIT 1000000

Get persons with no death date:

SELECT DISTINCT ?id ?gender ?year_of_birth
FROM stardog:context:virtual
WHERE {
    ?s a omop-cdm:Person ;
        omop-cdm:id ?id ;
        omop-cdm:gender_concept_id ?gender ;
        omop-cdm:year_of_birth ?year_of_birth .
    FILTER NOT EXISTS {?death omop-cdm:person_id ?s}

} LIMIT 1000000

Get how many years the patients stayed in hospital before dying:

SELECT DISTINCT ?id ?gender ?year_of_birth ?death_date (?year_of_death - ?year_of_birth AS ?age_of_death)
FROM stardog:context:virtual
WHERE {
    ?s a omop-cdm:Person ;
        omop-cdm:id ?id ;
        omop-cdm:gender_concept_id ?gender ;
        omop-cdm:year_of_birth ?year_of_birth .
        ?death omop-cdm:person_id ?s ;
               omop-cdm:death_date ?death_date
   BIND(xsd:integer(STRBEFORE(str(?death_date), "-")) AS ?year_of_death)

} LIMIT 1000000

⚠️ omop-cdm:year_of_birth is not the year of birth, but the year of admission at the hospital (to be fixed)

Get persons born after a specific date:

SELECT DISTINCT *
FROM stardog:context:virtual
WHERE {
    ?s a omop-cdm:Person ;
        omop-cdm:year_of_birth ?birthYear .
    FILTER (?birthYear > 2130)
} LIMIT 10000

See the Stardog introduction to SPARQL if you need to.


ℹ️ Additional infos

🧞 Generate SQL schema for CSV files

Install dependencies:

python3 -m venv .venv
source .venv/bin/activate
pip install csvkit mysql-connector-python

Generate schema from CSV. Note it needs to be manually fixed as they don't add (128) after VARCHAR

csvsql --db mysql://user:password@localhost:3306/heart-failure-db --insert stroke-prediction-cohort1.csv

πŸ”’οΈ Change the Stardog admin password

Fix the password, cf. https://docs.stardog.com/stardog-admin-cli-reference/user/user-passwd

docker-compose exec stardog stardog-admin user passwd --username admin admin

πŸ—ΊοΈ Convert SMS mappings to R2RML

To run in the Stardog docker container:

docker-compose exec stardog stardog-admin virtual mappings -f r2rml virtualgraph

πŸ”© Create a VKG with Apache Drill

TODO

SELECT COLUMNS[0] AS id, COLUMNS[1] AS age FROM dfs.`/data/stroke-prediction-cohort1.csv` LIMIT 3

πŸ”— Links

The Stardog documentation is quite consequent, please look into it when you want to do something: https://docs.stardog.com

Community forum: https://community.stardog.com

Example docker-compose for cluster: https://github.com/stardog-union/pystardog/blob/develop/docker-compose.cluster.yml


πŸš€ Deploy the stack

Requirements: docker 🐳, and you will need to get your Stardog license at https://www.stardog.com/license-request ⚠️

Deploys a local Stardog triplestore, a PostgreSQL database, and a MariaDB SQL database to create a Virtual Knowledge Graph (VKG).

Place the stardog-license-key.bin file in the root folder of this repository.

Download the JDBC drivers in the drivers/ folder by running this script:

./prepare.sh

Optionally create a .env file with the password for the SQL database, otherwise the default is passwordtochange:

echo "PASSWORD=yourpassword" > .env

Start Stardog and postgreSQL:

docker-compose up -d

ℹ️ The PostgreSQL database will be automatically initialized using the schema and data in virtual-kg/

About

πŸ•β€πŸ¦ΊπŸ’« Use a Stardog triplestore to create Virtual Knowledge Graphs

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published