- 사진 안에 있는 음식이 어떤 음식인지 인식할 수 있는 인공지능 모델 개발
- 사진 안에 있는 식재료가 어떤 식재료인지 인식할 수 있는 인공지능 모델 개발
You can start on any computer that can learn deep learning. If you want to learn fast, use GPU-workstation.
python version == 3.6.9
torch~=1.9.1
torchvision~=0.10.1
Pillow~=7.0.0
natsort~=7.0.1
sklearn~=0.0
scikit-learn~=0.24.2
tqdm~=4.42.0
numpy~=1.18.1
tensorflow~=2.2.0
tensorflow-gpu~=2.2.0
tensorboard~=2.7.0
matplotlib~=3.1.2
pip install -r requirements.txt
- If you only try inference,
torch~=1.9.1
torchvision~=0.10.1
Pillow~=7.0.0
natsort~=7.0.1
numpy~=1.18.1
If you respond to GoogleForms, we will share the download link within a few days. Currently, the shared checkpoint is ResNet152.
- Use TorchScript
test_model = torch.jit.load('./jit_traced_torch_model_name.pt', map_location='cpu')
sample_data = torch.randn(1, 3, 512, 512) # (1, channel, width, height)
out_data = test_model(sample_data)
- pytorch
python inference.py --config configure_name.json --image image_name.jpg --label labels.txt
- You need to create a configuration first.
- Then execute the following command:
python train.py --configuration configuration_name.json
- KOREA AI HUB DATASET - 한국 음식 이미지 데이터셋
- Fruit and Vegetable Image Dataset - 과일과 채소 데이터셋
- Vegetable Image Dataset - 채소 데이터셋
- Private Dataset (INGD_V1, INGD_V2)
- Introduction to TorchScript - TorchScript 소개 및 튜토리얼
- Deep Java Library Pytorch - Pytorch용 Deep Java Library Engine Provider 소개 및 튜토리얼
Pretrained Model | Accuracy | Loss | epoch | note |
---|---|---|---|---|
VGG16 | 0.077 | 5.001 | - | early stop, the performance is terrible |
RESNET50 | 81.94 | 0.78 | 60 | early stop, |
RESNET152 | 73.77 | 0.973 | 20 | comming soon! |
WIDERESNET50_2 | 72.52 | 0.998 | 20 | comming soon! |
MOBILENET V2 | 81.96 | 0.72 | 240 | cool, stop training |
DENSENET121 | 45.94 | 4.3338e+7 | 40 | early stop, |
Pretrained Model | Accuracy | Loss | epoch | note | dataset | num of class |
---|---|---|---|---|---|---|
VGG16 | - | - | - | poor accuracy | INGD_V1 (private) | 58 |
RESNET50 | - | - | - | poor accuracy | INGD_V1 (private) | 58 |
RESNET152 | 95.44 | 0.68 | 250 | fruits and vegs only | Food and Vegetable Image Dataset | 58 |
RESNET152 | 92.19 | 0.41 | 376 | nice accuracy | INGD_V1 (private) | 58 |
WIDERESNET50_2 | - | - | - | poor accuracy | INGD_V1 (private) | 58 |
MOBILENET V2 | 82.55 | 0.70 | 282 | not bad | INGD_V1 (private) | 58 |
DENSENET121 | - | - | - | poor accuracy | INGD_V1 (private) | 58 |
Pretrained Model | Accuracy | Loss | epoch | note | dataset | num of class |
---|---|---|---|---|---|---|
RESNET152 | 83.03 | 0.71 | 40 | now available! | INGD_V2 (private) | 238 |
MOBILENET V2 | comming soon! | INGD_V2 (private) | 238 |
- waverDeep - model architecture, setup train/test pipeline
GPU RESOURCE | RAM | COUNT | NOTE |
---|---|---|---|
NVIDIA TITAN RTX | 24G | 2 | training |
NVIDIA GeForce GTX 1080TI | 12G | 1 | develop, test or etc |
This project is licensed under the MIT License - see the LICENSE.md file for details