Skip to content

Seq2Seq model implemented with pytorch, using temperature sampling, top-k sampling, top-p sampling / nucleus sampling, and beam search.

Notifications You must be signed in to change notification settings

wenhaofang/Seq2SeqDiverse

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Seq2Seq with Diverse Decoding Algorithm

This is a Seq2Seq model with multiple diverse decoding algorithms.

Datasets:

Models:

  • model1: Seq2Seq

Decoding Algorithms:

  • Temperature Sampling

  • Top-K Sampling

  • Top-P Sampling / Nucleus Sampling

  • Beam Search

  • Diverse Beam Search (TODO)

Data Process

PYTHONPATH=. python dataprocess/process.py

Unit Test

  • for loader
PYTHONPATH=. python loaders/loader1.py
  • for module
PYTHONPATH=. python modules/module1.py

Main Process

python main.py

You can change the config either in the command line or in the file utils/parser.py

Here are the examples:

# train
python main.py \
    --mode train
# test with temperature_sampling
python main.py \
    --mode test \
    --decoding_algorithm temperature_sampling \
    --T 1e-13
# test with top_k_sampling
python main.py \
    --mode test \
    --decoding_algorithm top_k_sampling \
    --K 10
# test with top_p_sampling
python main.py \
    --mode test \
    --decoding_algorithm top_p_sampling \
    --P 0.3
# test with beam_search
python main.py \
    --mode test \
    --decoding_algorithm beam_search \
    --B 4

About

Seq2Seq model implemented with pytorch, using temperature sampling, top-k sampling, top-p sampling / nucleus sampling, and beam search.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages