Skip to content

Official repository of the paper "FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning"

License

Notifications You must be signed in to change notification settings

wenzhe-li/FightLadder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

Setup

Platform: Linux

Python: 3.8

Create environment:

conda env create -f environment.yml

Find out the gym-retro game folder:

import os
import retro

retro_directory = os.path.dirname(retro.__file__)
game_dir = "data/stable/StreetFighterIISpecialChampionEdition-Genesis"
print(os.path.join(retro_directory, game_dir))

Add state files in data/sf and ROM file into the game folder.

Disclaimer: We are unable to provide you with any game ROMs. It is the users own legal responsibility to acquire a game ROM for emulation. This library should only be used for non-commercial research purposes.

Key concepts

Environment is specified in main/common/retro_wrappers.py. It tracks the inner states of the game, and is compatible with Gym interface and popular RL packages such as stable-baselines.

Algorithms is implemented in main/common/algorithms.py and main/common/league.py. Specifically, IPPO in algorithms.py implements IPPO and 2Timescale methods, and League, PSRO, and FSP is implemented in league.py. We use PPO in stable-baselines as the backbone algorithm for all these implementations. The League implementation adapts the pseudocode in main/common/pseudocode, which is from previous work AlphaStar.

Run the experiment

RL against built-in CPU player:

python train.py --reset=round \
--state=stars/Champion.Level1.RyuVsRyu.${side}_star${state} \ # difficulty level
--side=${side} \ # left/right
--model-name-prefix=ppo_ryu_${side}_star${state} \
--save-dir=trained_models/ppo_ryu_${side}_star${state} \
--log-dir=logs/ppo_ryu_${side}_star${state} \
--video-dir=videos/ppo_ryu_${side}_star${state} \
--num-epoch=50 \
--enable-combo --null-combo --transform-action

RL with curriculum learning:

python finetune.py --reset=round \
--model-name-prefix=ppo_ryu_finetune \
--save-dir=trained_models/ppo_ryu_finetune \
--log-dir=logs/ppo_ryu_finetune \
--video-dir=videos/ppo_ryu_finetune \
--finetune-dir=finetune/ppo_ryu_finetune \
--num-epoch=25

IPPO / 2Timescale:

python ippo.py --reset=${task} \
--model-name-prefix=ippo_ryu_2p_scale_${scale}_${seed} \
--save-dir=trained_models/ippo_ryu_2p_scale_${scale}_${seed} \
--log-dir=logs/ippo_ryu_2p_scale_${scale}_${seed} \
--video-dir=videos/ippo_ryu_2p_scale_${scale}_${seed} \
--finetune-dir=finetune/ippo_ryu_2p_scale_${scale}_${seed} \
--num-epoch=50 \
--enable-combo --null-combo --transform-action \
--other-timescale=${scale} \ # scale=1 equivalent to IPPO
--seed=${seed} \

League / PSRO / FSP:

python train_ma.py --reset=round \
--save-dir=trained_models/ma \
--log-dir=logs/ma \
--left-model-file=trained_models/ppo_ryu_left_star8/ppo_ryu_left_star8_final_steps \
--right-model-file=trained_models/ppo_ryu_right_star8/ppo_ryu_right_star8_final_steps \
--enable-combo --null-combo --transform-action \
--seed=${seed}
# --psro-league for PSRO, --fsp-league for FSP

Single-Agent RL Exploiters:

python best_response.py --reset=round \
--model-name-prefix=br_${model}/seed_${seed} \
--save-dir=trained_models/ma_br/${model}/seed_${seed} \
--log-dir=logs/ma_br/${model}/seed_${seed} \
--video-dir=videos/ma_br/${model}/seed_${seed} \
--finetune-dir=finetune/ma_br/${model}/seed_${seed} \
--model-file=/path/to/model \ # --model-file is for 2P policies, also support load left and right 1P policies seperately, by --left-model-file and --right-model-file
--num-epoch=50 \
--enable-combo --null-combo --transform-action \
--update-right=0 \ # exploit the right policy, then do not update it 
--seed=${seed}

Play with trained policies:

python play_with_ai.py # change the model path in play_with_ai.py, the key mapping is in common/interactive.py

Stay tuned for supports on more fighting games! You could also integrate your own games via implementing a wrapper environment similar in main/common/retro_wrappers.py.

Citation

If you find our repo useful, please consider cite our work:

@inproceedings{lifightladder,
  title={FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning},
  author={Li, Wenzhe and Ding, Zihan and Karten, Seth and Jin, Chi},
  booktitle={Forty-first International Conference on Machine Learning}
}

About

Official repository of the paper "FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages