-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdual_clock_fifo.v
427 lines (386 loc) · 8.74 KB
/
dual_clock_fifo.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2013-2018 Efinix Inc. All rights reserved.
//
// Dual Clock FIFO
//
//********************************
// Revisions:
// 0.0 Initial rev
//********************************
module dual_clock_fifo_wrapper
#(
parameter DATA_WIDTH = 8,
parameter ADDR_WIDTH = 8,
parameter LATENCY = 1,
parameter FIFO_MODE = "STD_FIFO",
parameter RAM_INIT_FILE = "",
/////////////////////////////////////////////////////////////////////////////////////
// compatibility output_reg check_full_overflow check_empty_underflow
/////////////////////////////////////////////////////////////////////////////////////
// E user configurable user configurable user configurable
// X user configurable always on always on
// A always off user configurable user configurable
parameter COMPATIBILITY = "E",
parameter OUTPUT_REG = "TRUE",
parameter CHECK_FULL = "TRUE",
parameter CHECK_EMPTY = "TRUE"
)
(
input i_arst,
input i_wclk,
input i_we,
input [DATA_WIDTH-1:0] i_wdata,
input i_rclk,
input i_re,
output o_full,
// output o_afull, //TODO
output o_empty,
// output o_aempty, //TODO
output [DATA_WIDTH-1:0] o_rdata
);
generate
if (COMPATIBILITY == "X")
begin
if (FIFO_MODE == "BYPASS")
begin
dual_clock_fifo
#(
.DATA_WIDTH (DATA_WIDTH),
.ADDR_WIDTH (ADDR_WIDTH),
.LATENCY (LATENCY+4),
.FIFO_MODE (FIFO_MODE),
.RAM_INIT_FILE (RAM_INIT_FILE),
.COMPATIBILITY (COMPATIBILITY),
.OUTPUT_REG ("FALSE"),
.CHECK_FULL ("TRUE"),
.CHECK_EMPTY ("TRUE")
)
inst_dual_clock_fifo
(
.i_arst (i_arst),
.i_wclk (i_wclk),
.i_we (i_we),
.i_wdata (i_wdata),
.i_rclk (i_rclk),
.i_re (i_re),
.o_full (o_full),
.o_empty (o_empty),
.o_rdata (o_rdata)
);
end
else
begin
dual_clock_fifo
#(
.DATA_WIDTH (DATA_WIDTH),
.ADDR_WIDTH (ADDR_WIDTH),
.LATENCY (LATENCY+2),
.FIFO_MODE (FIFO_MODE),
.RAM_INIT_FILE (RAM_INIT_FILE),
.COMPATIBILITY (COMPATIBILITY),
.OUTPUT_REG (OUTPUT_REG),
.CHECK_FULL ("TRUE"),
.CHECK_EMPTY ("TRUE")
)
inst_dual_clock_fifo
(
.i_arst (i_arst),
.i_wclk (i_wclk),
.i_we (i_we),
.i_wdata (i_wdata),
.i_rclk (i_rclk),
.i_re (i_re),
.o_full (o_full),
.o_empty (o_empty),
.o_rdata (o_rdata)
);
end
end
else if (COMPATIBILITY == "A")
begin
dual_clock_fifo
#(
.DATA_WIDTH (DATA_WIDTH),
.ADDR_WIDTH (ADDR_WIDTH),
.LATENCY (LATENCY),
.FIFO_MODE (FIFO_MODE),
.RAM_INIT_FILE (RAM_INIT_FILE),
.COMPATIBILITY (COMPATIBILITY),
.OUTPUT_REG ("FALSE"),
.CHECK_FULL (CHECK_FULL),
.CHECK_EMPTY (CHECK_EMPTY)
)
inst_dual_clock_fifo
(
.i_arst (i_arst),
.i_wclk (i_wclk),
.i_we (i_we),
.i_wdata (i_wdata),
.i_rclk (i_rclk),
.i_re (i_re),
.o_full (o_full),
.o_empty (o_empty),
.o_rdata (o_rdata)
);
end
else
begin
dual_clock_fifo
#(
.DATA_WIDTH (DATA_WIDTH),
.ADDR_WIDTH (ADDR_WIDTH),
.LATENCY (LATENCY),
.FIFO_MODE (FIFO_MODE),
.RAM_INIT_FILE (RAM_INIT_FILE),
.COMPATIBILITY (COMPATIBILITY),
.OUTPUT_REG (OUTPUT_REG),
.CHECK_FULL (CHECK_FULL),
.CHECK_EMPTY (CHECK_EMPTY)
)
inst_dual_clock_fifo
(
.i_arst (i_arst),
.i_wclk (i_wclk),
.i_we (i_we),
.i_wdata (i_wdata),
.i_rclk (i_rclk),
.i_re (i_re),
.o_full (o_full),
.o_empty (o_empty),
.o_rdata (o_rdata)
);
end
endgenerate
endmodule
module dual_clock_fifo
#(
parameter DATA_WIDTH = 8,
parameter ADDR_WIDTH = 8,
parameter LATENCY = 1,
parameter FIFO_MODE = "STD_FIFO",
parameter RAM_INIT_FILE = "",
parameter COMPATIBILITY = "E",
parameter OUTPUT_REG = "FALSE",
parameter CHECK_FULL = "TRUE",
parameter CHECK_EMPTY = "TRUE"
)
(
input i_arst,
input i_wclk,
input i_we,
input [DATA_WIDTH-1:0] i_wdata,
input i_rclk,
input i_re,
output o_full,
output o_empty,
output [DATA_WIDTH-1:0] o_rdata
);
reg [ADDR_WIDTH:0] r_waddrb_1P;
reg r_wflag_1P;
reg [ADDR_WIDTH-1:0]r_waddrg_1P;
reg [ADDR_WIDTH-1:0]r_waddrg_2P;
reg r_we_1P;
reg r_re_1P;
reg [ADDR_WIDTH:0] r_raddrb_1P;
reg r_rflag_1P;
reg [ADDR_WIDTH-1:0]r_raddrg_1P;
reg r_rflag_2P;
reg [ADDR_WIDTH-1:0]r_raddrg_2P;
reg [LATENCY-1:0] r_empty;
reg [LATENCY:0] r_full;
wire [ADDR_WIDTH:0] w_waddrb_1P;
wire w_wflag_1P;
wire [ADDR_WIDTH-1:0]w_waddrg_1P;
wire [ADDR_WIDTH:0] w_raddrb_1P;
wire w_rflag_1P;
wire [ADDR_WIDTH-1:0]w_raddrg_1P;
wire w_empty;
wire w_full;
wire w_empty_P;
wire w_full_P;
wire w_we;
wire w_re;
wire [ADDR_WIDTH-1:0]w_raddr;
assign w_waddrb_1P = r_waddrb_1P + 1'b1;
assign w_wflag_1P = w_waddrb_1P[ADDR_WIDTH];
assign w_waddrg_1P[ADDR_WIDTH-1] = w_waddrb_1P[ADDR_WIDTH-1] ^ 1'b0;
assign w_waddrg_1P[ADDR_WIDTH-2:0] = w_waddrb_1P[ADDR_WIDTH-2:0] ^ w_waddrb_1P[ADDR_WIDTH-1:1];
assign w_full = ((r_waddrg_1P == r_raddrg_1P) &
(r_wflag_1P != r_rflag_1P))?
1'b1:
(i_we &
((w_waddrg_1P == r_raddrg_2P) &
(w_wflag_1P != r_rflag_2P)))?
1'b1:
1'b0;
always@(posedge i_arst or posedge i_wclk)
begin
if (i_arst)
begin
r_we_1P <= 1'b0;
r_waddrb_1P <= {ADDR_WIDTH{1'b0}};
r_wflag_1P <= 1'b0;
r_waddrg_1P <= {ADDR_WIDTH{1'b0}};
r_waddrg_2P <= {ADDR_WIDTH{1'b0}};
r_full[0] <= 1'b0;
end
else
begin
r_we_1P <= 1'b0;
if (CHECK_FULL == "TRUE")
begin
if (i_we & ~w_full_P)
begin
r_we_1P <= 1'b1;
r_waddrb_1P <= w_waddrb_1P;
r_wflag_1P <= w_wflag_1P;
r_waddrg_1P <= w_waddrg_1P;
end
end
else
begin
if (i_we)
begin
r_we_1P <= 1'b1;
r_waddrb_1P <= w_waddrb_1P;
r_wflag_1P <= w_wflag_1P;
r_waddrg_1P <= w_waddrg_1P;
end
end
if (r_we_1P)
r_waddrg_2P <= r_waddrg_1P;
r_full[0] <= w_full;
end
end
assign w_raddrb_1P = r_raddrb_1P + 1'b1;
assign w_rflag_1P = w_raddrb_1P[ADDR_WIDTH];
assign w_raddrg_1P[ADDR_WIDTH-1] = w_raddrb_1P[ADDR_WIDTH-1] ^ 1'b0;
assign w_raddrg_1P[ADDR_WIDTH-2:0] = w_raddrb_1P[ADDR_WIDTH-2:0] ^ w_raddrb_1P[ADDR_WIDTH-1:1];
assign w_empty = ((r_waddrg_2P == r_raddrg_1P) &
(r_wflag_1P == r_rflag_2P))?
1'b1:
(i_re &
((r_waddrg_1P == r_raddrg_1P) &
(r_wflag_1P == r_rflag_1P)))?
1'b1:
1'b0;
always@(posedge i_arst or posedge i_rclk)
begin
if (i_arst)
begin
r_re_1P <= 1'b0;
r_raddrb_1P <= {ADDR_WIDTH{1'b0}};
r_rflag_1P <= 1'b0;
r_raddrg_1P <= {ADDR_WIDTH{1'b0}};
r_rflag_2P <= 1'b0;
r_raddrg_2P <= {ADDR_WIDTH{1'b0}};
r_empty[0] <= 1'b1;
end
else
begin
r_re_1P <= 1'b0;
if (CHECK_FULL == "TRUE")
begin
if (i_re & ~w_empty_P)
begin
r_re_1P <= 1'b1;
r_raddrb_1P <= w_raddrb_1P;
r_rflag_1P <= w_rflag_1P;
r_raddrg_1P <= w_raddrg_1P;
end
end
else
begin
if (i_re)
begin
r_re_1P <= 1'b1;
r_raddrb_1P <= w_raddrb_1P;
r_rflag_1P <= w_rflag_1P;
r_raddrg_1P <= w_raddrg_1P;
end
end
if (r_re_1P)
begin
r_raddrg_2P <= r_raddrg_1P;
r_rflag_2P <= r_rflag_1P;
end
r_empty[0] <= w_empty;
end
end
genvar i, j;
generate
for (i=1; i<LATENCY; i=i+1)
begin: pipe_empty
always@(posedge i_arst or posedge i_rclk)
begin
if (i_arst)
r_empty[i] <= 1'b1;
else
r_empty[i] <= r_empty[i-1];
end
end
assign w_empty_P = w_empty | r_empty[LATENCY-1];
for (j=1; j<LATENCY+1; j=j+1)
begin: pipe_full
always@(posedge i_arst or posedge i_wclk)
begin
if (i_arst)
r_full[j] <= 1'b0;
else
r_full[j] <= r_full[j-1];
end
end
if (COMPATIBILITY == "X")
if (FIFO_MODE == "BYPASS")
assign w_full_P = r_full[0] | r_full[LATENCY-2];
else
assign w_full_P = r_full[0] | r_full[LATENCY];
else
assign w_full_P = r_full[0] | r_full[LATENCY-1];
if (CHECK_FULL == "TRUE")
assign w_we = i_we & ~w_full_P;
else
assign w_we = i_we;
if (FIFO_MODE == "BYPASS")
begin
assign w_re = 1'b1;
if (CHECK_EMPTY == "TRUE")
assign w_raddr = (i_re & ~w_empty_P)?
w_raddrg_1P[ADDR_WIDTH-1:0]:
r_raddrg_1P[ADDR_WIDTH-1:0];
else
assign w_raddr = (i_re)?
w_raddrg_1P[ADDR_WIDTH-1:0]:
r_raddrg_1P[ADDR_WIDTH-1:0];
end
else
begin
if (CHECK_EMPTY == "TRUE")
assign w_re = i_re & ~w_empty_P;
else
assign w_re = i_re;
assign w_raddr = r_raddrg_1P[ADDR_WIDTH-1:0];
end
simple_dual_port_ram
#(
.DATA_WIDTH(DATA_WIDTH),
.ADDR_WIDTH(ADDR_WIDTH),
.OUTPUT_REG(OUTPUT_REG),
.RAM_INIT_FILE(RAM_INIT_FILE)
)
inst_simple_dual_port_ram
(
.wdata(i_wdata),
.waddr(r_waddrg_1P[ADDR_WIDTH-1:0]),
.raddr(w_raddr),
.we(w_we),
.wclk(i_wclk),
.re(w_re),
.rclk(i_rclk),
.rdata(o_rdata)
);
endgenerate
assign o_empty = w_empty_P;
assign o_full = w_full_P;
endmodule