Skip to content

Commit

Permalink
Merge branch 'main' into feature/transit_stops_osm
Browse files Browse the repository at this point in the history
  • Loading branch information
chrowe authored Sep 11, 2024
2 parents 2864578 + 5cdd466 commit f18765f
Show file tree
Hide file tree
Showing 31 changed files with 570 additions and 121 deletions.
3 changes: 2 additions & 1 deletion .github/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ odc-stac==0.3.8
pystac-client==0.7.5
pytest==7.4.3
xarray-spatial==0.3.7
xee==0.0.3
xee==0.0.15
utm==0.7.0
osmnx==1.9.3
dask[complete]==2023.11.0
Expand All @@ -16,5 +16,6 @@ geemap==0.32.0
pip==23.3.1
boto3==1.34.124
scikit-learn==1.5.1
scikit-image==0.24.0
overturemaps==0.6.0
exactextract==0.2.0.dev252
1 change: 1 addition & 0 deletions city_metrix/layers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,3 +19,4 @@
from .alos_dsm import AlosDSM
from .overture_buildings import OvertureBuildings
from .nasa_dem import NasaDEM
from .impervious_surface import ImperviousSurface
18 changes: 14 additions & 4 deletions city_metrix/layers/albedo.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,12 +4,20 @@

from .layer import Layer, get_utm_zone_epsg, get_image_collection


class Albedo(Layer):
def __init__(self, start_date="2021-01-01", end_date="2022-01-01", threshold=None, **kwargs):
"""
Attributes:
start_date: starting date for data retrieval
end_date: ending date for data retrieval
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
threshold: threshold value for filtering the retrieval
"""

def __init__(self, start_date="2021-01-01", end_date="2022-01-01", spatial_resolution=10, threshold=None, **kwargs):
super().__init__(**kwargs)
self.start_date = start_date
self.end_date = end_date
self.spatial_resolution = spatial_resolution
self.threshold = threshold

def get_data(self, bbox):
Expand All @@ -30,7 +38,7 @@ def mask_and_count_clouds(s2wc, geom):
nb_cloudy_pixels = is_cloud.reduceRegion(
reducer=ee.Reducer.sum().unweighted(),
geometry=geom,
scale=10,
scale=self.spatial_resolution,
maxPixels=1e9
)
return s2wc.updateMask(is_cloud.eq(0)).set('nb_cloudy_pixels',
Expand Down Expand Up @@ -88,7 +96,9 @@ def calc_s2_albedo(image):
s2_albedo = dataset.map(calc_s2_albedo)
albedo_mean = s2_albedo.reduce(ee.Reducer.mean())

data = get_image_collection(ee.ImageCollection(albedo_mean), bbox, 10, "albedo").albedo_mean
data = (get_image_collection(
ee.ImageCollection(albedo_mean), bbox, self.spatial_resolution, "albedo")
.albedo_mean)

if self.threshold is not None:
return data.where(data < self.threshold)
Expand Down
10 changes: 8 additions & 2 deletions city_metrix/layers/alos_dsm.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,14 @@


class AlosDSM(Layer):
def __init__(self, **kwargs):
"""
Attributes:
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
"""

def __init__(self, spatial_resolution=30, **kwargs):
super().__init__(**kwargs)
self.spatial_resolution = spatial_resolution

def get_data(self, bbox):
dataset = ee.ImageCollection("JAXA/ALOS/AW3D30/V3_2")
Expand All @@ -16,6 +22,6 @@ def get_data(self, bbox):
.select('DSM')
.mean()
)
data = get_image_collection(alos_dsm, bbox, 30, "ALOS DSM").DSM
data = get_image_collection(alos_dsm, bbox, self.spatial_resolution, "ALOS DSM").DSM

return data
13 changes: 10 additions & 3 deletions city_metrix/layers/average_net_building_height.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,15 @@

from .layer import Layer, get_utm_zone_epsg, get_image_collection


class AverageNetBuildingHeight(Layer):
def __init__(self, **kwargs):
"""
Attributes:
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
"""

def __init__(self, spatial_resolution=100, **kwargs):
super().__init__(**kwargs)
self.spatial_resolution = spatial_resolution

def get_data(self, bbox):
# https://ghsl.jrc.ec.europa.eu/ghs_buH2023.php
Expand All @@ -18,6 +23,8 @@ def get_data(self, bbox):
# GLOBE - ee.Image("projects/wri-datalab/GHSL/GHS-BUILT-H-ANBH_GLOBE_R2023A")

anbh = ee.Image("projects/wri-datalab/GHSL/GHS-BUILT-H-ANBH_GLOBE_R2023A")
data = get_image_collection(ee.ImageCollection(anbh), bbox, 100, "average net building height").b1
data = (get_image_collection(
ee.ImageCollection(anbh), bbox, self.spatial_resolution, "average net building height")
.b1)

return data
10 changes: 8 additions & 2 deletions city_metrix/layers/built_up_height.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,14 @@


class BuiltUpHeight(Layer):
def __init__(self, **kwargs):
"""
Attributes:
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
"""

def __init__(self, spatial_resolution=100, **kwargs):
super().__init__(**kwargs)
self.spatial_resolution = spatial_resolution

def get_data(self, bbox):
# Notes for Heat project:
Expand All @@ -18,6 +24,6 @@ def get_data(self, bbox):
# ee.ImageCollection("projects/wri-datalab/GHSL/GHS-BUILT-H-ANBH_R2023A")

built_height = ee.Image("JRC/GHSL/P2023A/GHS_BUILT_H/2018")
data = get_image_collection(ee.ImageCollection(built_height), bbox, 100, "built up height")
data = get_image_collection(ee.ImageCollection(built_height), bbox, self.spatial_resolution, "built up height")
return data.built_height

31 changes: 19 additions & 12 deletions city_metrix/layers/esa_world_cover.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,32 +19,39 @@ class EsaWorldCoverClass(Enum):
MANGROVES = 95
MOSS_AND_LICHEN = 100


class EsaWorldCover(Layer):
"""
Attributes:
land_cover_class: Enum value from EsaWorldCoverClass
year: year used for data retrieval
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
"""

STAC_CATALOG_URI = "https://services.terrascope.be/stac/"
STAC_COLLECTION_ID = "urn:eop:VITO:ESA_WorldCover_10m_2020_AWS_V1"
STAC_ASSET_ID = "ESA_WORLDCOVER_10M_MAP"

def __init__(self, land_cover_class=None, year=2020, **kwargs):
def __init__(self, land_cover_class=None, year=2020, spatial_resolution=10, **kwargs):
super().__init__(**kwargs)
self.land_cover_class = land_cover_class
self.year = year
self.spatial_resolution = spatial_resolution

def get_data(self, bbox):
if self.year == 2020:
data = get_image_collection(
ee.ImageCollection("ESA/WorldCover/v100"),
bbox,
10,
"ESA world cover"
).Map
ee.ImageCollection("ESA/WorldCover/v100"),
bbox,
self.spatial_resolution,
"ESA world cover"
).Map
elif self.year == 2021:
data = get_image_collection(
ee.ImageCollection("ESA/WorldCover/v200"),
bbox,
10,
"ESA world cover"
).Map
ee.ImageCollection("ESA/WorldCover/v200"),
bbox,
self.spatial_resolution,
"ESA world cover"
).Map

if self.land_cover_class:
data = data.where(data == self.land_cover_class.value)
Expand Down
11 changes: 9 additions & 2 deletions city_metrix/layers/high_land_surface_temperature.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,19 +8,26 @@


class HighLandSurfaceTemperature(Layer):
"""
Attributes:
start_date: starting date for data retrieval
end_date: ending date for data retrieval
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
"""
THRESHOLD_ADD = 3

def __init__(self, start_date="2013-01-01", end_date="2023-01-01", **kwargs):
def __init__(self, start_date="2013-01-01", end_date="2023-01-01", spatial_resolution=30, **kwargs):
super().__init__(**kwargs)
self.start_date = start_date
self.end_date = end_date
self.spatial_resolution = spatial_resolution

def get_data(self, bbox):
hottest_date = self.get_hottest_date(bbox)
start_date = (hottest_date - datetime.timedelta(days=45)).strftime("%Y-%m-%d")
end_date = (hottest_date + datetime.timedelta(days=45)).strftime("%Y-%m-%d")

lst = LandSurfaceTemperature(start_date, end_date).get_data(bbox)
lst = LandSurfaceTemperature(start_date, end_date, self.spatial_resolution).get_data(bbox)
lst_mean = lst.mean(dim=['x', 'y'])
high_lst = lst.where(lst >= (lst_mean + self.THRESHOLD_ADD))
return high_lst
Expand Down
23 changes: 23 additions & 0 deletions city_metrix/layers/impervious_surface.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
from dask.diagnostics import ProgressBar
import xarray as xr
import xee
import ee

from .layer import Layer, get_utm_zone_epsg, get_image_collection


class ImperviousSurface(Layer):
def __init__(self, **kwargs):
super().__init__(**kwargs)

def get_data(self, bbox):
# load impervious_surface
dataset = ee.ImageCollection(ee.Image("Tsinghua/FROM-GLC/GAIA/v10").gt(0)) # change_year_index is zero if permeable as of 2018
imperv_surf = ee.ImageCollection(dataset
.filterBounds(ee.Geometry.BBox(*bbox))
.select('change_year_index')
.sum()
)

data = get_image_collection(imperv_surf, bbox, 100, "imperv surf")
return data.change_year_index
13 changes: 10 additions & 3 deletions city_metrix/layers/land_surface_temperature.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,19 @@
import ee
import xarray


class LandSurfaceTemperature(Layer):
def __init__(self, start_date="2013-01-01", end_date="2023-01-01", **kwargs):
"""
Attributes:
start_date: starting date for data retrieval
end_date: ending date for data retrieval
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
"""

def __init__(self, start_date="2013-01-01", end_date="2023-01-01", spatial_resolution=30, **kwargs):
super().__init__(**kwargs)
self.start_date = start_date
self.end_date = end_date
self.spatial_resolution = spatial_resolution

def get_data(self, bbox):
def cloud_mask(image):
Expand All @@ -31,5 +38,5 @@ def apply_scale_factors(image):
.map(apply_scale_factors) \
.reduce(ee.Reducer.mean())

data = get_image_collection(ee.ImageCollection(l8_st), bbox, 30, "LST").ST_B10_mean
data = get_image_collection(ee.ImageCollection(l8_st), bbox, self.spatial_resolution, "LST").ST_B10_mean
return data
5 changes: 3 additions & 2 deletions city_metrix/layers/landsat_collection_2.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,8 @@ def get_data(self, bbox):
fail_on_error=False,
)

# TODO: Determine how to output xarray

qa_lst = lc2.where((lc2.qa_pixel & 24) == 0)
return qa_lst.drop_vars("qa_pixel")



3 changes: 3 additions & 0 deletions city_metrix/layers/layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -274,9 +274,12 @@ def get_image_collection(
:param name: optional name to print while reporting progress
:return:
"""
if scale is None:
raise Exception("Spatial_resolution cannot be None.")

crs = get_utm_zone_epsg(bbox)

# See link regarding bug in crs specification https://github.com/google/Xee/issues/118
ds = xr.open_dataset(
image_collection,
engine='ee',
Expand Down
10 changes: 8 additions & 2 deletions city_metrix/layers/nasa_dem.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,14 @@


class NasaDEM(Layer):
def __init__(self, **kwargs):
"""
Attributes:
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
"""

def __init__(self, spatial_resolution=30, **kwargs):
super().__init__(**kwargs)
self.spatial_resolution = spatial_resolution

def get_data(self, bbox):
dataset = ee.Image("NASA/NASADEM_HGT/001")
Expand All @@ -16,6 +22,6 @@ def get_data(self, bbox):
.select('elevation')
.mean()
)
data = get_image_collection(nasa_dem, bbox, 30, "NASA DEM").elevation
data = get_image_collection(nasa_dem, bbox, self.spatial_resolution, "NASA DEM").elevation

return data
11 changes: 8 additions & 3 deletions city_metrix/layers/natural_areas.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,18 @@
from .layer import Layer
from .esa_world_cover import EsaWorldCover, EsaWorldCoverClass


class NaturalAreas(Layer):
def __init__(self, **kwargs):
"""
Attributes:
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
"""

def __init__(self, spatial_resolution=10, **kwargs):
super().__init__(**kwargs)
self.spatial_resolution = spatial_resolution

def get_data(self, bbox):
esa_world_cover = EsaWorldCover().get_data(bbox)
esa_world_cover = EsaWorldCover(spatial_resolution=self.spatial_resolution).get_data(bbox)
reclass_map = {
EsaWorldCoverClass.TREE_COVER.value: 1,
EsaWorldCoverClass.SHRUBLAND.value: 1,
Expand Down
14 changes: 8 additions & 6 deletions city_metrix/layers/ndvi_sentinel2_gee.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,15 +4,18 @@
class NdviSentinel2(Layer):
""""
NDVI = Sentinel-2 Normalized Difference Vegetation Index
param: year: The satellite imaging year.
Attributes:
year: The satellite imaging year.
spatial_resolution: raster resolution in meters (see https://github.com/stac-extensions/raster)
return: a rioxarray-format DataArray
Author of associated Jupyter notebook: Ted.Wong@wri.org
Notebook: https://github.com/wri/cities-cities4forests-indicators/blob/dev-eric/scripts/extract-VegetationCover.ipynb
Reference: https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
"""
def __init__(self, year=None, **kwargs):
def __init__(self, year=None, spatial_resolution=10, **kwargs):
super().__init__(**kwargs)
self.year = year
self.spatial_resolution = spatial_resolution

def get_data(self, bbox):
if self.year is None:
Expand All @@ -39,8 +42,7 @@ def calculate_ndvi(image):
ndvi_mosaic = ndvi.qualityMosaic('NDVI')

ic = ee.ImageCollection(ndvi_mosaic)
ndvi_data = get_image_collection(ic, bbox, 10, "NDVI")
ndvi_data = (get_image_collection(ic, bbox, self.spatial_resolution, "NDVI")
.NDVI)

xdata = ndvi_data.to_dataarray()

return xdata
return ndvi_data
2 changes: 0 additions & 2 deletions city_metrix/layers/sentinel_2_level_2.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,4 @@ def get_data(self, bbox):
cloud_masked = s2.where(s2 != 0).where(s2.scl != 3).where(s2.scl != 8).where(s2.scl != 9).where(
s2.scl != 10)

# TODO: Determine how to output as an xarray

return cloud_masked.drop_vars("scl")
Loading

0 comments on commit f18765f

Please sign in to comment.