Skip to content

Latest commit

 

History

History
67 lines (50 loc) · 5.78 KB

README.md

File metadata and controls

67 lines (50 loc) · 5.78 KB

shape-reconstruction

Shape reconstruction from RGBD images from ShapeNet dataset.

Milestone X+2 - 26.05.2023

  1. Created a draft of a report: see overleaf
  2. Generated animations
Animations Category
https://github.com/wtaisner/shape-reconstruction/assets/61318908/941920fd-0673-438b-ae26-22edce5bc3f0 bag
https://github.com/wtaisner/shape-reconstruction/assets/61318908/87831403-c0dc-4f26-aa9b-d051569937cc camera
https://github.com/wtaisner/shape-reconstruction/assets/61318908/d2d6faf8-615a-4a88-b421-3fe4ca9ad309 cap
https://github.com/wtaisner/shape-reconstruction/assets/61318908/1c009e67-ddf2-4a27-9d87-52d40fa85a2a car
https://github.com/wtaisner/shape-reconstruction/assets/61318908/8931a628-ea2e-4aad-92be-b891a6ce4c58 dishwasher
https://github.com/wtaisner/shape-reconstruction/assets/61318908/4ec3c516-bb5b-4784-8e10-108816c1a5a8 table
https://github.com/wtaisner/shape-reconstruction/assets/61318908/60e78f8f-5729-4b31-a528-840dbcda310f tower

Milestone X+1 - 19.05.2023

  1. Voxel scaling methods and their results are in the src/voxel_grid_scaling.ipynb notebook.
  2. We created the following dataset: sampled 50% of the already possessed voxel grids of size 32 (compared to 20% in the previous experiments). Moreover, we took 21 small categories from the original ShapeNet, downsampled voxel grids from 128 to 32.
  3. We trained the model on the dataset from point 2.
  4. For the best model:
Prediction vs ground truth IOU @ [0.2, 0.3, 0.4, 0.5]
example 1 [0.0, 0.0, 0.0, 0.0]
example 2 [0.006169031374156475, 0.0024671051651239395, 0.0007207207381725311, 0.0004868549294769764]
example 3 [0.788195788860321, 0.7476620078086853, 0.6822559237480164, 0.6127283573150635]
example 4 [0.05392912030220032, 0.03249683976173401, 0.0163899976760149, 0.009334315545856953]
example 5 [0.3507832884788513, 0.3627062737941742, 0.3700735867023468, 0.3858749568462372]
example 6 [0.45544764399528503, 0.4681413769721985, 0.4616822302341461, 0.3465259373188019] (shared with train)

Milestone X - 12.05.2023

Prediction vs ground truth IOU @ [0.2, 0.3, 0.4, 0.5]
example 1 [0.662952184677124, 0.678329348564148, 0.670099139213562, 0.6430394649505615]
example 2 [0.7360618710517883, 0.7447314858436584, 0.7390680909156799, 0.7052906155586243] (category shared with train)
example 3 [0.2536977529525757, 0.2402084320783615, 0.2236427366733551, 0.1977536380290985]
example 4 [0.5040155053138733, 0.49083250761032104, 0.4773334562778473, 0.4625006318092346]

Milestone 2 - 28.04.2023

Literature / useful sources:

Milestone 1 - 21.04.2023

Activities performed:

  • implementation of ShapeNet sampling script (scripts/sample_shapenet.py)
  • implementation of RenderBlender(TM) - a script parsing meshes into RGB and depth images (scripts/render_blender.py)
  • preprocessing of the sampled pared of the dataset (10%)
RGB DEPTH
rgb depth