Skip to content

wtaisner/shape-reconstruction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

shape-reconstruction

Shape reconstruction from RGBD images from ShapeNet dataset.

Milestone X+2 - 26.05.2023

  1. Created a draft of a report: see overleaf
  2. Generated animations
Animations Category
https://github.com/wtaisner/shape-reconstruction/assets/61318908/941920fd-0673-438b-ae26-22edce5bc3f0 bag
https://github.com/wtaisner/shape-reconstruction/assets/61318908/87831403-c0dc-4f26-aa9b-d051569937cc camera
https://github.com/wtaisner/shape-reconstruction/assets/61318908/d2d6faf8-615a-4a88-b421-3fe4ca9ad309 cap
https://github.com/wtaisner/shape-reconstruction/assets/61318908/1c009e67-ddf2-4a27-9d87-52d40fa85a2a car
https://github.com/wtaisner/shape-reconstruction/assets/61318908/8931a628-ea2e-4aad-92be-b891a6ce4c58 dishwasher
https://github.com/wtaisner/shape-reconstruction/assets/61318908/4ec3c516-bb5b-4784-8e10-108816c1a5a8 table
https://github.com/wtaisner/shape-reconstruction/assets/61318908/60e78f8f-5729-4b31-a528-840dbcda310f tower

Milestone X+1 - 19.05.2023

  1. Voxel scaling methods and their results are in the src/voxel_grid_scaling.ipynb notebook.
  2. We created the following dataset: sampled 50% of the already possessed voxel grids of size 32 (compared to 20% in the previous experiments). Moreover, we took 21 small categories from the original ShapeNet, downsampled voxel grids from 128 to 32.
  3. We trained the model on the dataset from point 2.
  4. For the best model:
Prediction vs ground truth IOU @ [0.2, 0.3, 0.4, 0.5]
example 1 [0.0, 0.0, 0.0, 0.0]
example 2 [0.006169031374156475, 0.0024671051651239395, 0.0007207207381725311, 0.0004868549294769764]
example 3 [0.788195788860321, 0.7476620078086853, 0.6822559237480164, 0.6127283573150635]
example 4 [0.05392912030220032, 0.03249683976173401, 0.0163899976760149, 0.009334315545856953]
example 5 [0.3507832884788513, 0.3627062737941742, 0.3700735867023468, 0.3858749568462372]
example 6 [0.45544764399528503, 0.4681413769721985, 0.4616822302341461, 0.3465259373188019] (shared with train)

Milestone X - 12.05.2023

Prediction vs ground truth IOU @ [0.2, 0.3, 0.4, 0.5]
example 1 [0.662952184677124, 0.678329348564148, 0.670099139213562, 0.6430394649505615]
example 2 [0.7360618710517883, 0.7447314858436584, 0.7390680909156799, 0.7052906155586243] (category shared with train)
example 3 [0.2536977529525757, 0.2402084320783615, 0.2236427366733551, 0.1977536380290985]
example 4 [0.5040155053138733, 0.49083250761032104, 0.4773334562778473, 0.4625006318092346]

Milestone 2 - 28.04.2023

Literature / useful sources:

Milestone 1 - 21.04.2023

Activities performed:

  • implementation of ShapeNet sampling script (scripts/sample_shapenet.py)
  • implementation of RenderBlender(TM) - a script parsing meshes into RGB and depth images (scripts/render_blender.py)
  • preprocessing of the sampled pared of the dataset (10%)
RGB DEPTH
rgb depth

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published