bvhar 2.1.0
-
Use Signal Adaptive Variable Selector (SAVS) to generate sparse coefficient from shrinkage priors.
-
var_bayes()
andvhar_bayes()
now handle both shrinkage priors and stochastic volatility. -
bvar_ssvs()
,bvar_horseshoe()
,bvar_sv()
,bvhar_ssvs()
,bvhar_horseshoe()
, andbvhar_sv()
are deprecated, and will be removed in v2.1.0 with their source functions. -
set_horseshoe()
has additional setting forgroup_shrinkage
. Horseshoe sampling now has additional group shrinkage level parameters. -
set_ssvs()
now additionally should specify different Beta hyperparameters for each own-lag and cross-lag. -
set_ssvs()
sets scaling factor and inverse-gamma hyperparameters for coefficients and cholesky factor slab sd. -
Use full bayesian approach to SSVS spike and slab sd's instead of semi-automatic approach, in
var_bayes()
andvhar_bayes()
. -
MCMC functions return give
$param
and$param_names
, not individual$*_record
members. -
sim_gig()
generates Generalized Inverse Gaussian (GIG) random numbers using the algorithm of R packageGIGrvg
.
New priors
-
set_dl()
specifies Dirichlet-Laplace (DL) prior invar_bayes()
andvhar_bayes()
. -
set_ng()
specifies Normal-Gamma (NG) prior invar_bayes()
andvhar_bayes()
. -
bvar_sv()
andbvhar_sv()
supports hierarchical Minnesota prior.
Internal changes
-
Added regularization step in internal Normal posterior generation function against non-existing LLT case.
-
Added
BOOST_DISABLE_ASSERTS
flag againstboost
asserts.
Spillover effects
-
spillover()
computes static spillover given model. -
dynamic_spillover()
computes dynamic spillover given model.
Forecasting
-
predict()
,forecast_roll()
, andforecast_expand()
with LDLT models can use CI level when adding sparsity. -
predict()
,forecast_roll()
, andforecast_expand()
ofldltmod
havesparse
option to use sparsity. -
predict()
,forecast_roll()
, andforecast_expand()
with SV models can use CI level when adding sparsity. -
predict()
,forecast_roll()
, andforecast_expand()
ofsvmod
havesparse
option to use sparsity. -
Out-of-sample forecasting functions are now S3 generics (
forecast_roll()
andforecast_expand()
). -
Add Rolling-window forecasting for LDLT models (
forecast_roll.ldltmod()
). -
Add Expanding-window forecasting for LDLT models (
forecast_expand.ldltmod()
). -
Add Rolling-window forecasting for SV models (
forecast_roll.svmod()
). -
Add Expanding-window forecasting for SV models (
forecast_expand.svmod()
). -
When forecasting SV models, it is available to choose whether to use time-varying covariance (
use_sv
option, which isTRUE
by default). -
forecast_roll()
andforecast_expand()
can implement OpenMP multithreading, except inbvarflat
class. -
If the model uses multiple chain MCMC, static schedule is used in
forecast_roll()
and dynamic schedule inforecast_expand()
. -
sim_mniw()
output format has been changed into list of lists. -
Now can use MNIW generation by including header (
std::vector<Eigen::MatrixXd> sim_mn_iw(...)
). -
Compute LPL inside
forecast_roll.svmod()
andforecast_expand.svmod()
usinglpl
option. -
Instead,
lpl
method is removed.