Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Foldnes-Moss-Grønneberg tests #344

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 11 additions & 1 deletion R/lav_options.R
Original file line number Diff line number Diff line change
Expand Up @@ -880,6 +880,16 @@ lav_options_set <- function(opt = NULL) { # nolint
"browne.residual.adf.model",
"bollen.stine"
))

fmgs = c()
for (j in seq_along(wrong.idx)) {
fmg_parsed = lav_fmg_parse_input(opt$test[wrong.idx[j]])
if (!is.null(fmg_parsed)) {
fmgs = c(fmgs, opt$test[wrong.idx[j]])
wrong.idx = wrong.idx[-j]
}
}

if (length(wrong.idx) > 0L) {
lav_msg_stop(gettextf(
"invalid option(s) for test argument: %1$s. Possible options are: %2$s.",
Expand All @@ -889,7 +899,7 @@ lav_options_set <- function(opt = NULL) { # nolint
"browne.residual.nt.model", "satorra.bentler",
"yuan.bentler", "yuan.bentler.mplus",
"mean.var.adjusted", "scaled.shifted",
"bollen.stine"), log.sep = "or")))
"bollen.stine", "fmg", "fmgols"), log.sep = "or")))
}

# bounds
Expand Down
50 changes: 33 additions & 17 deletions R/lav_test.R
Original file line number Diff line number Diff line change
Expand Up @@ -168,24 +168,33 @@ lav_test_rename <- function(test, check = FALSE) {
test[target.idx] <- "browne.residual.nt.model"
}

# report unknown values
bad.idx <- which(!test %in% c(
"standard", "none", "default",
"satorra.bentler",
"yuan.bentler",
"yuan.bentler.mplus",
"mean.adjusted",
"mean.var.adjusted",
"scaled.shifted",
"bollen.stine",
"browne.residual.nt",
"browne.residual.nt.model",
"browne.residual.adf",
"browne.residual.adf.model"
))

fmgs = c()
for (j in seq_along(bad.idx)) {
fmg_parsed = lav_fmg_parse_input(test[bad.idx[j]])
if (!is.null(fmg_parsed)) {
fmgs = c(fmgs, test[bad.idx[j]])
bad.idx = bad.idx[-j]
}
}

# check?
if (check) {
# report unknown values
bad.idx <- which(!test %in% c(
"standard", "none", "default",
"satorra.bentler",
"yuan.bentler",
"yuan.bentler.mplus",
"mean.adjusted",
"mean.var.adjusted",
"scaled.shifted",
"bollen.stine",
"browne.residual.nt",
"browne.residual.nt.model",
"browne.residual.adf",
"browne.residual.adf.model"
))
if (length(bad.idx) > 0L) {
lav_msg_stop(sprintf(
ngettext(
Expand All @@ -212,7 +221,7 @@ lav_test_rename <- function(test, check = FALSE) {
}
}

# reorder: first nonscaled, then scaled
# reorder: first nonscaled, then scaled, then fmg.
nonscaled.idx <- which(test %in% c(
"standard", "none", "default",
"bollen.stine",
Expand All @@ -229,7 +238,9 @@ lav_test_rename <- function(test, check = FALSE) {
"mean.var.adjusted",
"scaled.shifted"
))
test <- c(test[nonscaled.idx], test[scaled.idx])

scaled <- c(test[scaled.idx], sort(fmgs))
test <- c(test[nonscaled.idx], scaled)

test
}
Expand Down Expand Up @@ -555,6 +566,9 @@ lav_model_test <- function(lavobject = NULL,
# which test statistic shall we scale?
unscaled.TEST <- TEST[[1]]
if (lavoptions$scaled.test != "standard") {
print(test.orig)
print(lavoptions$scaled.test)
print(TEST)
idx <- which(test.orig == lavoptions$scaled.test)
if (length(idx) > 0L) {
unscaled.TEST <- TEST[[idx[1]]]
Expand Down Expand Up @@ -684,6 +698,8 @@ lav_model_test <- function(lavobject = NULL,
boot.larger = boot.larger,
boot.length = boot.length
)
} else if (!is.null(input <- lav_fmg_parse_input(this.test))) {
TEST[[this.test]] <- lav_test_fmg(lavobject, input)
}
} # additional tests

Expand Down
235 changes: 235 additions & 0 deletions R/lav_test_fmg.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
lav_rls <- \(object) {
s_inv <- chol2inv(chol(lavaan::lavInspect(object, "sigma.hat")))
residuals <- lavaan::lavInspect(object, "residuals")
mm <- residuals[[1]] %*% s_inv
n <- lavaan::lavInspect(object, "nobs")
.5 * n * sum(mm * t(mm))
}

lav_test_fmg <- \(object, input) {
make_chisqs <- \(chisq) {
if (chisq == "ml") lavaan::fitmeasures(object, "chisq") else rls(object)
}

name <- input$name
param <- input$param
#unbiased <- input$unbiased
#chisq <- if (input$chisq == "ml") lavaan::fitmeasures(object, "chisq") else lav_rls(object)
chisq <- fitmeasures(object, "chisq")
df <- fitmeasures(object, "df")
ug <- lav_object_inspect_UGamma(object) # Only for one group.
#ug <- lav_ugamma_no_groups(object, unbiased)
lambdas <- Re(eigen(ug)$values)[seq(df)]

print(chisq)
print(lambdas)
print(param)
list(
test = lav_fmg_reconstruct_label(input),
pvalue = if (name == "fmg") {
lav_fmg(chisq, lambdas, param)
} else if (name == "fmgols") {
lav_fmgols(chisq, lambdas, param)
},
label = lav_fmg_reconstruct_label(input))
}

lav_fmg_parse_input <- \(string) {
na_to_null <- \(x) if (is.na(x)) NULL else x
default <- \(x) if (x != "") as.numeric(x) else 4

tryCatch ({
string <- tolower(string)
splitted <- strsplit(string, "_")[[1]]
name <- na_to_null(splitted[1])
out <- NULL

if (name != "fmg" && name != "fmgols") {
return(NULL)
}

param <- if (length(splitted) == 2) {
as.numeric(splitted[2])
} else if (name == "fmg") {
4
} else {
0.5
}

list(
param = param,
name = name
)
}, error = \(e){
cat(e)
})
}

lav_fmg_reconstruct_label <- \(input) paste0(input$name, "_", input$param)

lav_fmg_construct_label <- \(input) {
if (input$name == "fmg") {
paste0("FMG with ", input$param, " blocks.")
} else {
paste0("FMGOLS with weighting parameter ", input$param, ".")
}
}

lav_fmg <- \(chisq, lambdas, j) {
m <- length(lambdas)
k <- ceiling(m / j)
eig <- lambdas
eig <- c(eig, rep(NA, k * j - length(eig)))
dim(eig) <- c(k, j)
eig_means <- colMeans(eig, na.rm = TRUE)
eig_mean <- mean(lambdas)
repeated <- rep(eig_means, each = k)[seq(m)]
lav_fmg_imhof(chisq, (repeated + eig_mean) / 2)
}

lav_fmgols <- \(chisq, lambdas, gamma) {
x <- seq_along(lambdas)
beta1_hat <- 1 / gamma * stats::cov(x, lambdas) / stats::var(x)
beta0_hat <- mean(lambdas) - beta1_hat * mean(x)
lambda_hat <- pmax(beta0_hat + beta1_hat * x, 0)
lav_fmg_imhof(chisq, lambda_hat)
}

lav_fmg_imhof <- \(x, lambda) {
theta <- \(u, x, lambda) 0.5 * (sum(atan(lambda * u)) - x * u)
rho <- \(u, lambda) exp(1 / 4 * sum(log(1 + lambda^2 * u^2)))
integrand <- Vectorize(\(u) {
sin(theta(u, x, lambda)) / (u * rho(u, lambda))
})
z <- tryCatch({
integrate(integrand, lower = 0, upper = Inf)$value
},
error = \(e) {
integrate(integrand, lower = 0, upper = 1000)$value
})
0.5 + z / pi
}


#' Calculate non-nested ugamma for multiple groups.
#' @param object A `lavaan` object.
#' @param unbiased If `TRUE`, uses the unbiased gamma estimate.
#' @keywords internal
#' @return Ugamma for non-nested object.
ugamma_non_nested <- \(object) {
lavmodel <- object@Model

ceq_idx <- attr(lavmodel@con.jac, "ceq.idx")
if (length(ceq_idx) > 0L) {
stop("Testing of models with groups and equality constraints not supported.")
}

test <- list()
lavsamplestats <- object@SampleStats
lavmodel <- object@Model
lavoptions <- object@Options
lavimplied <- object@implied
lavdata <- object@Data
test$standard <- object@test[[1]]

if (test$standard$df == 0L || test$standard$df < 0) {
stop("Df must be > 0.")
}

e <- lavaan:::lav_model_information(
lavmodel = lavmodel,
lavimplied = lavimplied,
lavsamplestats = lavsamplestats,
lavdata = lavdata,
lavoptions = lavoptions,
extra = TRUE
)

delta <- attr(e, "Delta")
wls_v <- attr(e, "WLS.V")

gamma <- lavaan:::lav_object_gamma(object)
if (is.null(gamma[[1]])) {
gamma <- lapply(lavaan::lavInspect(object, "gamma"), \(x) {
class(x) <- "matrix"
x
})
}

gamma_global <- as.matrix(Matrix::bdiag(gamma))
delta_global <- do.call(rbind, delta)
v_global <- as.matrix(Matrix::bdiag(wls_v))
x <- v_global %*% delta_global
u_global <- v_global - crossprod(t(x), solve(t(delta_global) %*% x, t(x)))
u_global %*% gamma_global
}

#' Calculate nested ugamma.
#'
#' This can also be used with restrictions.
#'
#' @param m0,m1 Two nested `lavaan` objects.
#' @param a The `A` matrix. If if `NULL`, gets calculated by
#' `lavaan:::lav_test_diff_A` with `method = method`.
#' @param method Method passed to `lavaan:::lav_test_diff_A`.
#' @param unbiased If `TRUE`, uses the unbiased gamma estimate.
#' @keywords internal
#' @return Ugamma for nested object.
lav_ugamma_nested <- \(m0, m1, a = NULL, method = "delta", unbiased = FALSE) {
m0@Options$gamma.unbiased <- unbiased
m1@Options$gamma.unbiased <- unbiased

# extract information from m1 and m2
t1 <- m1@test[[1]]$stat
r1 <- m1@test[[1]]$df

t0 <- m0@test[[1]]$stat
r0 <- m0@test[[1]]$df

# m = difference between the df's
m <- r0 - r1

# check for identical df setting
if (m == 0L) {
return(list(
T.delta = (t0 - t1), scaling.factor = as.numeric(NA),
df.delta = m, a = as.numeric(NA), b = as.numeric(NA)
))
}

gamma <- lavaan:::lav_object_gamma(m0) # the same for m1 and m0

if (is.null(gamma)) {
stop("lavaan error: Can not compute gamma matrix; perhaps missing \"ml\"?")
}

wls_v <- lavaan::lavTech(m1, "WLS.V")
pi <- lavaan::lavInspect(m1, "delta")

p_inv <- lavaan::lavInspect(m1, what = "inverted.information")

if (is.null(a)) {
a <- lavaan:::lav_test_diff_A(m1, m0, method = method, reference = "H1")
if (m1@Model@eq.constraints) {
a <- a %*% t(m1@Model@eq.constraints.K)
}
}

paapaap <- p_inv %*% t(a) %*% MASS::ginv(a %*% p_inv %*% t(a)) %*% a %*% p_inv

# compute scaling factor
fg <- unlist(m1@SampleStats@nobs) / m1@SampleStats@ntotal

# We need the global gamma, cf. eq.~(10) in Satorra (2000).
gamma_rescaled <- gamma
for (i in (seq_along(gamma))) {
gamma_rescaled[[i]] <- fg[i] * gamma_rescaled[[i]]
}
gamma_global <- as.matrix(Matrix::bdiag(gamma_rescaled))
# Also the global V:
v_global <- as.matrix(Matrix::bdiag(wls_v))
pi_global <- do.call(rbind, pi)
# U global version, eq.~(22) in Satorra (2000).
u_global <- v_global %*% pi_global %*% paapaap %*% t(pi_global) %*% v_global
return(u_global %*% gamma_global)
}
Loading
Loading