Exploiting Interactivity and Heterogeneity for Sleep Stage Classification via Heterogeneous Graph Neural Network
- Python 3.7
- PyTorch 1.8.0
- PyTorch Geometric 1.7.0
- MNE 1.3.1
- CUDA 10.1
- Install Pytorch
pip install torch==1.8.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
- Install torch_scatter
wget https://data.pyg.org/whl/torch-1.8.0%2Bcu101/torch_scatter-2.0.7-cp37-cp37m-linux_x86_64.whl
pip install torch_scatter-2.0.7-cp37-cp37m-linux_x86_64.whl
- Install torch_sparse
wget https://data.pyg.org/whl/torch-1.8.0%2Bcu101/torch_sparse-0.6.9-cp37-cp37m-linux_x86_64.whl
pip install torch_sparse-0.6.9-cp37-cp37m-linux_x86_64.whl
- Install torch_geometric
pip install torch_geometric==1.7.0
- Install
unrar
to extract .rar file from ISRUC dataset.
sudo apt-get install unrar
- Download the raw data:
./get_data.sh
- Preprocessing the data:
python preprocess.py
For training and evaluation, modify the config file and run this command:
python training.py
Our model achieves the following performance on ISRUC-3:
Accuracy | F1-score |
---|---|
79.01% | 77.02% |
The code of this repository is released under the MIT license.