Skip to content

zlogic/matrix-eyes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Matrix Eyes

Matrix Eyes is a weekend project to convert a photo image into an autostereogram.

Using the MiDaS and Apple Depth Pro depth estimation algorithms.

Instructions

Installation

pip install -r requirements.txt

For MiDaS, install opencv-python as well:

pip install opencv-python

For Depth Pro, download the model checkpoints:

mkdir checkpoints
curl -LJ -o checkpoints/depth_pro.pt https://ml-site.cdn-apple.com/models/depth-pro/depth_pro.pt

Usage

To use a custom Torch home directory, set the TORCH_HOME environment variable.

To gerate a depth image, run:

python main.py [--model-type=Depth_Pro|DPT_Large|DPT_Hybrid|MiDaS_small] [--output-format=image|stereogram|mesh] [--stereo-amplitude=<value>] <input file> <output_file>

replacing <input file> with the source image filename, and <output file> with the output destination filename.

Additional (optional) arguments:

  • model-type specifies one of the MiDaS models
    • Depth_Pro will use Depth Pro (alternative to MiDaS)
    • DPT_Large will use MiDaS v3 - Large (highest accuracy, slowest inference speed); default
    • DPT_Hybrid will use MiDaS v3 - Hybrid (medium accuracy, medium inference speed)
    • MiDaS_small will use MiDaS v2.1 - Small (lowest accuracy, highest inference speed)
  • output-format specifies what to output
    • image will output a depth map image; default
    • stereogram will output a stereogram image
    • mesh will output a 3D Wavefront OBJ file
  • stereo-amplitude specifies the maximum offset/depth for stereograms (relative to image width); might need to be reduced if most of the image consists of foreground objects

Examples

Image 1

Source image:

Source image 1

Depth data extracted by MiDaS:

Depth data for image 1

Generated stereogram - works best when viewed in fullscreen:

Stereogram for image 1

About

No description or website provided.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages