Skip to content

Commit

Permalink
feat: solve No.1140
Browse files Browse the repository at this point in the history
  • Loading branch information
BaffinLee committed Aug 20, 2024
1 parent 5822ab7 commit 868c13b
Showing 1 changed file with 87 additions and 0 deletions.
87 changes: 87 additions & 0 deletions 1101-1200/1140. Stone Game II.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# 1140. Stone Game II

- Difficulty: Medium.
- Related Topics: Array, Math, Dynamic Programming, Prefix Sum, Game Theory.
- Similar Questions: Stone Game V, Stone Game VI, Stone Game VII, Stone Game VIII, Stone Game IX.

## Problem

Alice and Bob continue their games with piles of stones.  There are a number of piles **arranged in a row**, and each pile has a positive integer number of stones `piles[i]`.  The objective of the game is to end with the most stones. 

Alice and Bob take turns, with Alice starting first.  Initially, `M = 1`.

On each player's turn, that player can take **all the stones** in the **first** `X` remaining piles, where `1 <= X <= 2M`.  Then, we set `M = max(M, X)`.

The game continues until all the stones have been taken.

Assuming Alice and Bob play optimally, return the maximum number of stones Alice can get.


Example 1:

```
Input: piles = [2,7,9,4,4]
Output: 10
Explanation: If Alice takes one pile at the beginning, Bob takes two piles, then Alice takes 2 piles again. Alice can get 2 + 4 + 4 = 10 piles in total. If Alice takes two piles at the beginning, then Bob can take all three piles left. In this case, Alice get 2 + 7 = 9 piles in total. So we return 10 since it's larger.
```

Example 2:

```
Input: piles = [1,2,3,4,5,100]
Output: 104
```


**Constraints:**



- `1 <= piles.length <= 100`

- `1 <= piles[i] <= 104`



## Solution

```javascript
/**
* @param {number[]} piles
* @return {number}
*/
var stoneGameII = function(piles) {
var dp = Array(piles.length).fill(0).map(() => ({}));
var suffixSum = Array(piles.length);
for (var i = piles.length - 1; i >= 0; i--) {
suffixSum[i] = (suffixSum[i + 1] || 0) + piles[i];
}
return helper(piles, 0, 1, dp, suffixSum);
};

var helper = function(piles, i, M, dp, suffixSum) {
if (dp[i][M]) return dp[i][M];
var res = 0;
var sum = 0;
for (var j = 0; j < 2 * M && i + j < piles.length; j++) {
sum += piles[i + j];
res = Math.max(
res,
i + j + 1 === piles.length
? sum
: sum + suffixSum[i + j + 1] - helper(piles, i + j + 1, Math.max(M, j + 1), dp, suffixSum)
);
}
dp[i][M] = res;
return res;
}
```

**Explain:**

nope.

**Complexity:**

* Time complexity : O(n ^ 3).
* Space complexity : O(n ^ 2).

0 comments on commit 868c13b

Please sign in to comment.