Skip to content

Comprehensive ensembling of protein-ligand structure and affinity prediction methods (CASP16)

License

Notifications You must be signed in to change notification settings

BioinfoMachineLearning/MULTICOM_ligand

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MULTICOM_ligand

Paper DOI PyPI version Project Status: Active – The project has reached a stable, usable state and is being actively developed. Docs Config: Hydra Code style: black License: MIT

Description

Comprehensive ensembling of protein-ligand structure and affinity prediction methods

Documentation

Contents

Installation

Portable installation

To reuse modules and utilities within MULTICOM_ligand in other projects, one can simply use pip

pip install multicom_ligand

Full installation

To reproduce, customize, or extend the MULTICOM_ligand benchmark, we recommend fully installing MULTICOM_ligand using mamba as follows:

First, install mamba for dependency management (as a fast alternative to Anaconda)

wget "https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-$(uname)-$(uname -m).sh"
bash Mambaforge-$(uname)-$(uname -m).sh  # accept all terms and install to the default location
rm Mambaforge-$(uname)-$(uname -m).sh  # (optionally) remove installer after using it
source ~/.bashrc  # alternatively, one can restart their shell session to achieve the same result

Install dependencies for each method's environment (as desired)

# clone project
sudo apt-get install git-lfs  # NOTE: run this if you have not already installed `git-lfs`
git lfs install
git clone https://github.com/BioinfoMachineLearning/MULTICOM_ligand --recursive
cd MULTICOM_ligand

# create conda environments (~80 GB total)
# - MULTICOM_ligand environment # (~15 GB)
mamba env create -f environments/multicom_ligand_environment.yaml
conda activate MULTICOM_ligand  # NOTE: one still needs to use `conda` to (de)activate environments
pip3 install -e .
pip3 install numpy==1.26.4 --no-dependencies
pip3 install prody==2.4.1 --no-dependencies
# - casp15_ligand_scoring environment (~3 GB)
mamba env create -f environments/casp15_ligand_scoring_environment.yaml
conda activate casp15_ligand_scoring  # NOTE: one still needs to use `conda` to (de)activate environments
pip3 install -e .
# - DiffDock environment (~13 GB)
mamba env create -f environments/diffdock_environment.yaml --prefix forks/DiffDock/DiffDock/
conda activate forks/DiffDock/DiffDock/  # NOTE: one still needs to use `conda` to (de)activate environments
# - FABind environment (~6 GB)
mamba env create -f environments/fabind_environment.yaml --prefix forks/FABind/FABind/
conda activate forks/FABind/FABind/  # NOTE: one still needs to use `conda` to (de)activate environments
# - DynamicBind environment (~13 GB)
mamba env create -f environments/dynamicbind_environment.yaml --prefix forks/DynamicBind/DynamicBind/
conda activate forks/DynamicBind/DynamicBind/  # NOTE: one still needs to use `conda` to (de)activate environments
# - NeuralPLexer environment (~14 GB)
mamba env create -f environments/neuralplexer_environment.yaml --prefix forks/NeuralPLexer/NeuralPLexer/
conda activate forks/NeuralPLexer/NeuralPLexer/  # NOTE: one still needs to use `conda` to (de)activate environments
cd forks/NeuralPLexer/ && pip3 install -e . && cd ../../
# - RoseTTAFold-All-Atom environment (~14 GB) - NOTE: after running these commands, follow the installation instructions in `forks/RoseTTAFold-All-Atom/README.md` starting at Step 4 (with `forks/RoseTTAFold-All-Atom/` as the current working directory)
mamba env create -f environments/rfaa_environment.yaml --prefix forks/RoseTTAFold-All-Atom/RFAA/
conda activate forks/RoseTTAFold-All-Atom/RFAA/  # NOTE: one still needs to use `conda` to (de)activate environments
cd forks/RoseTTAFold-All-Atom/rf2aa/SE3Transformer/ && pip3 install --no-cache-dir -r requirements.txt && python3 setup.py install && cd ../../../../
# - AutoDock Vina Tools environment (~1 GB)
mamba env create -f environments/adfr_environment.yaml --prefix forks/Vina/ADFR/
conda activate forks/Vina/ADFR/  # NOTE: one still needs to use `conda` to (de)activate environments
# - P2Rank (~0.5 GB)
wget -P forks/P2Rank/ https://github.com/rdk/p2rank/releases/download/2.4.2/p2rank_2.4.2.tar.gz
tar -xzf forks/P2Rank/p2rank_2.4.2.tar.gz -C forks/P2Rank/
rm forks/P2Rank/p2rank_2.4.2.tar.gz

Download checkpoints (~8.25 GB total)

# DynamicBind checkpoint (~0.25 GB)
cd forks/DynamicBind/
wget https://zenodo.org/records/10137507/files/workdir.zip
unzip workdir.zip
rm workdir.zip
cd ../../

# NeuralPLexer checkpoint (~6.5 GB)
cd forks/NeuralPLexer/
wget https://zenodo.org/records/10373581/files/neuralplexermodels_downstream_datasets_predictions.zip
unzip neuralplexermodels_downstream_datasets_predictions.zip
rm neuralplexermodels_downstream_datasets_predictions.zip
cd ../../

# RoseTTAFold-All-Atom checkpoint (~1.5 GB)
cd forks/RoseTTAFold-All-Atom/
wget http://files.ipd.uw.edu/pub/RF-All-Atom/weights/RFAA_paper_weights.pt
cd ../../

Tutorials

We provide a two-part tutorial series of Jupyter notebooks to provide users with examples of how to extend MULTICOM_ligand, as outlined below.

  1. Adding a new dataset
  2. Adding a new method

How to prepare MULTICOM_ligand data

Downloading Astex, PoseBusters, DockGen, and CASP15 data

# fetch, extract, and clean-up preprocessed Astex Diverse, PoseBusters Benchmark, DockGen, and CASP15 data (~3 GB) #
wget https://zenodo.org/records/11477766/files/astex_diverse_set.tar.gz
wget https://zenodo.org/records/11477766/files/posebusters_benchmark_set.tar.gz
wget https://zenodo.org/records/11477766/files/dockgen_set.tar.gz
wget https://zenodo.org/records/11477766/files/casp15_set.tar.gz
tar -xzf astex_diverse_set.tar.gz
tar -xzf posebusters_benchmark_set.tar.gz
tar -xzf dockgen_set.tar.gz
tar -xzf casp15_set.tar.gz
rm astex_diverse_set.tar.gz
rm posebusters_benchmark_set.tar.gz
rm dockgen_set.tar.gz
rm casp15_set.tar.gz

Downloading benchmark method predictions

# fetch, extract, and clean-up benchmark method predictions to reproduce paper results (~19 GB) #
# DiffDock predictions and results
wget https://zenodo.org/records/11477766/files/diffdock_benchmark_method_predictions.tar.gz
tar -xzf diffdock_benchmark_method_predictions.tar.gz
rm diffdock_benchmark_method_predictions.tar.gz
# FABind predictions and results
wget https://zenodo.org/records/11477766/files/fabind_benchmark_method_predictions.tar.gz
tar -xzf fabind_benchmark_method_predictions.tar.gz
rm fabind_benchmark_method_predictions.tar.gz
# DynamicBind predictions and results
wget https://zenodo.org/records/11477766/files/dynamicbind_benchmark_method_predictions.tar.gz
tar -xzf dynamicbind_benchmark_method_predictions.tar.gz
rm dynamicbind_benchmark_method_predictions.tar.gz
# NeuralPLexer predictions and results
wget https://zenodo.org/records/11477766/files/neuralplexer_benchmark_method_predictions.tar.gz
tar -xzf neuralplexer_benchmark_method_predictions.tar.gz
rm neuralplexer_benchmark_method_predictions.tar.gz
# RoseTTAFold-All-Atom predictions and results
wget https://zenodo.org/records/11477766/files/rfaa_benchmark_method_predictions.tar.gz
tar -xzf rfaa_benchmark_method_predictions.tar.gz
rm rfaa_benchmark_method_predictions.tar.gz
# TULIP predictions and results
wget https://zenodo.org/records/11477766/files/tulip_benchmark_method_predictions.tar.gz
tar -xzf tulip_benchmark_method_predictions.tar.gz
rm tulip_benchmark_method_predictions.tar.gz
# AutoDock Vina predictions and results
wget https://zenodo.org/records/11477766/files/vina_benchmark_method_predictions.tar.gz
tar -xzf vina_benchmark_method_predictions.tar.gz
rm vina_benchmark_method_predictions.tar.gz
# Astex Diverse, PoseBusters Benchmark (w/ pocket-only results), DockGen, and CASP15 consensus ensemble predictions and results
wget https://zenodo.org/records/11477766/files/astex_diverse_ensemble_benchmark_method_predictions.tar.gz
wget https://zenodo.org/records/11477766/files/posebusters_benchmark_ensemble_benchmark_method_predictions.tar.gz
wget https://zenodo.org/records/11477766/files/dockgen_ensemble_benchmark_method_predictions.tar.gz
wget https://zenodo.org/records/11477766/files/casp15_ensemble_benchmark_method_predictions.tar.gz
tar -xzf astex_diverse_ensemble_benchmark_method_predictions.tar.gz
tar -xzf posebusters_benchmark_ensemble_benchmark_method_predictions.tar.gz
tar -xzf dockgen_ensemble_benchmark_method_predictions.tar.gz
tar -xzf casp15_ensemble_benchmark_method_predictions.tar.gz
rm astex_diverse_ensemble_benchmark_method_predictions.tar.gz
rm posebusters_benchmark_ensemble_benchmark_method_predictions.tar.gz
rm dockgen_ensemble_benchmark_method_predictions.tar.gz
rm casp15_ensemble_benchmark_method_predictions.tar.gz

NOTE: One can reproduce the pocket-only experiments with the PoseBusters Benchmark set by adding the argument pocket_only_baseline=true to each command below used to run PoseBusters Benchmark dataset inference with all the baseline methods, since the pocket-only versions of the dataset's holo-aligned predicted protein structures have also been included in the downloadable Zenodo archive posebusters_benchmark_set.tar.gz referenced above. However, be aware that one then needs to rename any existing directories containing PoseBusters Benchmark dataset inference results for each baseline method, to prevent these existing inference directories from being merged with new pocket-only results. Please see the config files within configs/data/, configs/model/, and configs/analysis/ for more details.

Downloading sequence databases (required only for RoseTTAFold-All-Atom inference)

# acquire multiple sequence alignment databases for RoseTTAFold-All-Atom (~2.5 TB)
cd forks/RoseTTAFold-All-Atom/

# uniref30 [46G]
wget http://wwwuser.gwdg.de/~compbiol/uniclust/2020_06/UniRef30_2020_06_hhsuite.tar.gz
mkdir -p UniRef30_2020_06
tar xfz UniRef30_2020_06_hhsuite.tar.gz -C ./UniRef30_2020_06

# BFD [272G]
wget https://bfd.mmseqs.com/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt.tar.gz
mkdir -p bfd
tar xfz bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt.tar.gz -C ./bfd

# structure templates (including *_a3m.ffdata, *_a3m.ffindex)
wget https://files.ipd.uw.edu/pub/RoseTTAFold/pdb100_2021Mar03.tar.gz
tar xfz pdb100_2021Mar03.tar.gz

cd ../../

Predicting apo protein structures using ESMFold

First create all the corresponding FASTA files for each protein sequence

python3 multicom_ligand/data/components/esmfold_fasta_preparation.py dataset=posebusters_benchmark
python3 multicom_ligand/data/components/esmfold_fasta_preparation.py dataset=astex_diverse

To generate the apo version of each protein structure, create ESMFold-ready versions of the combined FASTA files prepared above by the script esmfold_fasta_preparation.py for the PoseBusters Benchmark and Astex Diverse sets, respectively

python3 multicom_ligand/data/components/esmfold_sequence_preparation.py dataset=posebusters_benchmark
python3 multicom_ligand/data/components/esmfold_sequence_preparation.py dataset=astex_diverse

Then, predict each apo protein structure using ESMFold's batch inference script

python3 multicom_ligand/data/components/esmfold_batch_structure_prediction.py -i data/posebusters_benchmark_set/posebusters_benchmark_esmfold_sequences.fasta -o data/posebusters_benchmark_set/posebusters_benchmark_esmfold_structures --skip-existing
python3 multicom_ligand/data/components/esmfold_batch_structure_prediction.py -i data/astex_diverse_set/astex_diverse_esmfold_sequences.fasta -o data/astex_diverse_set/astex_diverse_esmfold_structures --skip-existing

NOTE: Having a CUDA-enabled device available when running ESMFold is highly recommended

NOTE: ESMFold may not be able to predict apo protein structures for a handful of exceedingly-long (e.g., >2000 token) input sequences

Lastly, align each apo protein structure to its corresponding holo protein structure counterpart in the PoseBusters Benchmark or Astex Diverse set, taking ligand conformations into account during each alignment

python3 multicom_ligand/data/components/esmfold_apo_to_holo_alignment.py dataset=posebusters_benchmark num_workers=1
python3 multicom_ligand/data/components/esmfold_apo_to_holo_alignment.py dataset=astex_diverse num_workers=1

NOTE: The preprocessed DockGen and CASP15 data available via Zenodo provide pre-holo-aligned predicted protein structures for these respective datasets.

Available inference methods

Methods available individually

Fixed Protein Methods

Name Source Astex Benchmarked PoseBusters Benchmarked DockGen Benchmarked CASP Benchmarked
DiffDock Corso et al. ✓ ✓ ✓ ✓
FABind Pei et al. ✓ ✓ ✓ ✗
AutoDock Vina Eberhardt et al. ✓ ✓ ✓ ✓
TULIP ✓ ✓ ✗ ✓

Flexible Protein Methods

Name Source Astex Benchmarked PoseBusters Benchmarked DockGen Benchmarked CASP Benchmarked
DynamicBind Lu et al. ✓ ✓ ✓ ✓
NeuralPLexer Qiao et al. ✓ ✓ ✓ ✓
RoseTTAFold-All-Atom Krishna et al. ✓ ✓ ✓ ✓

Methods available for ensembling

Fixed Protein Methods

Name Source Astex Benchmarked PoseBusters Benchmarked DockGen Benchmarked CASP Benchmarked
DiffDock Corso et al. ✓ ✓ ✓ ✓
AutoDock Vina Eberhardt et al. ✓ ✓ ✓ ✓
TULIP ✓ ✓ ✗ ✓

Flexible Protein Methods

Name Source Astex Benchmarked PoseBusters Benchmarked DockGen Benchmarked CASP Benchmarked
DynamicBind Lu et al. ✓ ✓ ✓ ✓
NeuralPLexer Qiao et al. ✓ ✓ ✓ ✓
RoseTTAFold-All-Atom Krishna et al. ✓ ✓ ✓ ✓

NOTE: Have a new method to add? Please let us know by creating a pull request. We would be happy to work with you to integrate new methodology into this benchmark!

How to run inference with individual methods

How to run inference with DiffDock

Prepare CSV input files

python3 multicom_ligand/data/diffdock_input_preparation.py dataset=posebusters_benchmark
python3 multicom_ligand/data/diffdock_input_preparation.py dataset=astex_diverse
python3 multicom_ligand/data/diffdock_input_preparation.py dataset=dockgen
python3 multicom_ligand/data/diffdock_input_preparation.py dataset=casp15 input_data_dir="$PWD"/data/casp15_set/targets input_protein_structure_dir="$PWD"/data/casp15_set/predicted_structures

Run inference on each dataset

python3 multicom_ligand/models/diffdock_inference.py dataset=posebusters_benchmark repeat_index=1
...
python3 multicom_ligand/models/diffdock_inference.py dataset=astex_diverse repeat_index=1
...
python3 multicom_ligand/models/diffdock_inference.py dataset=dockgen repeat_index=1
...
python3 multicom_ligand/models/diffdock_inference.py dataset=casp15 batch_size=1 repeat_index=1
...

Relax the generated ligand structures inside of their respective protein pockets

python3 multicom_ligand/models/inference_relaxation.py method=diffdock dataset=posebusters_benchmark remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1 repeat_index=1
...
python3 multicom_ligand/models/inference_relaxation.py method=diffdock dataset=astex_diverse remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1 repeat_index=1
...
python3 multicom_ligand/models/inference_relaxation.py method=diffdock dataset=dockgen remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1 repeat_index=1
...

NOTE: Increase num_processes according to your available CPU/GPU resources to improve throughput

Analyze inference results for each dataset

python3 multicom_ligand/analysis/inference_analysis.py method=diffdock dataset=posebusters_benchmark repeat_index=1
...
python3 multicom_ligand/analysis/inference_analysis.py method=diffdock dataset=astex_diverse repeat_index=1
...
python3 multicom_ligand/analysis/inference_analysis.py method=diffdock dataset=dockgen repeat_index=1
...

Analyze inference results for the CASP15 dataset

# first assemble (unrelaxed and post ranking-relaxed) CASP15-compliant prediction submission files for scoring
python3 multicom_ligand/models/ensemble_generation.py ensemble_methods=\[diffdock\] input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_diffdock_ensemble_predictions_1 skip_existing=true relax_method_ligands_post_ranking=false export_file_format=casp15 export_top_n=5 combine_casp_output_files=true max_method_predictions=40 method_top_n_to_select=40 resume=true ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 cuda_device_index=0 ensemble_benchmarking_repeat_index=1
python3 multicom_ligand/models/ensemble_generation.py ensemble_methods=\[diffdock\] input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_diffdock_ensemble_predictions_1 skip_existing=true relax_method_ligands_post_ranking=true export_file_format=casp15 export_top_n=5 combine_casp_output_files=true max_method_predictions=40 method_top_n_to_select=40 resume=true ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 cuda_device_index=0 ensemble_benchmarking_repeat_index=1
# NOTE: the suffixes for both `output_dir` and `ensemble_benchmarking_repeat_index` should be modified to e.g., 2, 3, ...
...
# now score the CASP15-compliant submissions using the official CASP scoring pipeline
python3 multicom_ligand/analysis/inference_analysis_casp.py method=diffdock dataset=casp15 repeat_index=1
...

How to run inference with FABind

Prepare CSV input files

python3 multicom_ligand/data/fabind_input_preparation.py dataset=posebusters_benchmark
python3 multicom_ligand/data/fabind_input_preparation.py dataset=astex_diverse
python3 multicom_ligand/data/fabind_input_preparation.py dataset=dockgen

Run inference on each dataset

python3 multicom_ligand/models/fabind_inference.py dataset=posebusters_benchmark repeat_index=1
...
python3 multicom_ligand/models/fabind_inference.py dataset=astex_diverse repeat_index=1
...
python3 multicom_ligand/models/fabind_inference.py dataset=dockgen repeat_index=1
...

Relax the generated ligand structures inside of their respective protein pockets

python3 multicom_ligand/models/inference_relaxation.py method=fabind dataset=posebusters_benchmark remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1 repeat_index=1
...
python3 multicom_ligand/models/inference_relaxation.py method=fabind dataset=astex_diverse remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1 repeat_index=1
...
python3 multicom_ligand/models/inference_relaxation.py method=fabind dataset=dockgen remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1 repeat_index=1
...

NOTE: Increase num_processes according to your available CPU/GPU resources to improve throughput

Analyze inference results for each dataset

python3 multicom_ligand/analysis/inference_analysis.py method=fabind dataset=posebusters_benchmark repeat_index=1
...
python3 multicom_ligand/analysis/inference_analysis.py method=fabind dataset=astex_diverse repeat_index=1
...
python3 multicom_ligand/analysis/inference_analysis.py method=fabind dataset=dockgen repeat_index=1
...

How to run inference with DynamicBind

Prepare CSV input files

python3 multicom_ligand/data/dynamicbind_input_preparation.py dataset=posebusters_benchmark
python3 multicom_ligand/data/dynamicbind_input_preparation.py dataset=astex_diverse
python3 multicom_ligand/data/dynamicbind_input_preparation.py dataset=dockgen
python3 multicom_ligand/data/dynamicbind_input_preparation.py dataset=casp15 input_data_dir="$PWD"/data/casp15_set/targets

Run inference on each dataset

python3 multicom_ligand/models/dynamicbind_inference.py dataset=posebusters_benchmark repeat_index=1
...
python3 multicom_ligand/models/dynamicbind_inference.py dataset=astex_diverse repeat_index=1
...
python3 multicom_ligand/models/dynamicbind_inference.py dataset=dockgen repeat_index=1
...
python3 multicom_ligand/models/dynamicbind_inference.py dataset=casp15 batch_size=1 input_data_dir="$PWD"/data/casp15_set/predicted_structures repeat_index=1
...

Relax the generated ligand structures inside of their respective protein pockets

python3 multicom_ligand/models/inference_relaxation.py method=dynamicbind dataset=posebusters_benchmark remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1 repeat_index=1
...
python3 multicom_ligand/models/inference_relaxation.py method=dynamicbind dataset=astex_diverse remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1 repeat_index=1
...
python3 multicom_ligand/models/inference_relaxation.py method=dynamicbind dataset=dockgen remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1 repeat_index=1
...

NOTE: Increase num_processes according to your available CPU/GPU resources to improve throughput

Analyze inference results for each dataset

python3 multicom_ligand/analysis/inference_analysis.py method=dynamicbind dataset=posebusters_benchmark repeat_index=1
...
python3 multicom_ligand/analysis/inference_analysis.py method=dynamicbind dataset=astex_diverse repeat_index=1
...
python3 multicom_ligand/analysis/inference_analysis.py method=dynamicbind dataset=dockgen repeat_index=1
...

Analyze inference results for the CASP15 dataset

# first assemble (unrelaxed and post ranking-relaxed) CASP15-compliant prediction submission files for scoring
python3 multicom_ligand/models/ensemble_generation.py ensemble_methods=\[dynamicbind\] input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_dynamicbind_ensemble_predictions_1 skip_existing=true relax_method_ligands_post_ranking=false export_file_format=casp15 export_top_n=5 combine_casp_output_files=true max_method_predictions=40 method_top_n_to_select=40 resume=true ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 cuda_device_index=0 ensemble_benchmarking_repeat_index=1
python3 multicom_ligand/models/ensemble_generation.py ensemble_methods=\[dynamicbind\] input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_dynamicbind_ensemble_predictions_1 skip_existing=true relax_method_ligands_post_ranking=true export_file_format=casp15 export_top_n=5 combine_casp_output_files=true max_method_predictions=40 method_top_n_to_select=40 resume=true ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 cuda_device_index=0 ensemble_benchmarking_repeat_index=1
# NOTE: the suffixes for both `output_dir` and `ensemble_benchmarking_repeat_index` should be modified to e.g., 2, 3, ...
...
# now score the CASP15-compliant submissions using the official CASP scoring pipeline
python3 multicom_ligand/analysis/inference_analysis_casp.py method=dynamicbind dataset=casp15 repeat_index=1
...

How to run inference with NeuralPLexer

Prepare CSV input files

python3 multicom_ligand/data/neuralplexer_input_preparation.py dataset=posebusters_benchmark
python3 multicom_ligand/data/neuralplexer_input_preparation.py dataset=astex_diverse
python3 multicom_ligand/data/neuralplexer_input_preparation.py dataset=dockgen
python3 multicom_ligand/data/neuralplexer_input_preparation.py dataset=casp15 input_data_dir="$PWD"/data/casp15_set/targets input_receptor_structure_dir="$PWD"/data/casp15_set/predicted_structures

Run inference on each dataset

python3 multicom_ligand/models/neuralplexer_inference.py dataset=posebusters_benchmark repeat_index=1
...
python3 multicom_ligand/models/neuralplexer_inference.py dataset=astex_diverse repeat_index=1
...
python3 multicom_ligand/models/neuralplexer_inference.py dataset=dockgen repeat_index=1
...
python3 multicom_ligand/models/neuralplexer_inference.py dataset=casp15 repeat_index=1
...

Relax the generated ligand structures inside of their respective protein pockets

python3 multicom_ligand/models/inference_relaxation.py method=neuralplexer dataset=posebusters_benchmark num_processes=1 remove_initial_protein_hydrogens=true assign_partial_charges_manually=true cache_files=false repeat_index=1
...
python3 multicom_ligand/models/inference_relaxation.py method=neuralplexer dataset=astex_diverse num_processes=1 remove_initial_protein_hydrogens=true assign_partial_charges_manually=true cache_files=false repeat_index=1
...
python3 multicom_ligand/models/inference_relaxation.py method=neuralplexer dataset=dockgen num_processes=1 remove_initial_protein_hydrogens=true assign_partial_charges_manually=true cache_files=false repeat_index=1
...

NOTE: Increase num_processes according to your available CPU/GPU resources to improve throughput

Align predicted protein-ligand structures to ground-truth complex structures

python3 multicom_ligand/analysis/complex_alignment.py method=neuralplexer dataset=posebusters_benchmark repeat_index=1
...
python3 multicom_ligand/analysis/complex_alignment.py method=neuralplexer dataset=astex_diverse repeat_index=1
...
python3 multicom_ligand/analysis/complex_alignment.py method=neuralplexer dataset=dockgen repeat_index=1
...

Analyze inference results for each dataset

python3 multicom_ligand/analysis/inference_analysis.py method=neuralplexer dataset=posebusters_benchmark repeat_index=1
...
python3 multicom_ligand/analysis/inference_analysis.py method=neuralplexer dataset=astex_diverse repeat_index=1
...
python3 multicom_ligand/analysis/inference_analysis.py method=neuralplexer dataset=dockgen repeat_index=1
...

Analyze inference results for the CASP15 dataset

# first assemble (unrelaxed and post ranking-relaxed) CASP15-compliant prediction submission files for scoring
python3 multicom_ligand/models/ensemble_generation.py ensemble_methods=\[neuralplexer\] input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_neuralplexer_ensemble_predictions_1 skip_existing=true relax_method_ligands_post_ranking=false export_file_format=casp15 export_top_n=5 combine_casp_output_files=true max_method_predictions=40 method_top_n_to_select=40 resume=true ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 cuda_device_index=0 ensemble_benchmarking_repeat_index=1
python3 multicom_ligand/models/ensemble_generation.py ensemble_methods=\[neuralplexer\] input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_neuralplexer_ensemble_predictions_1 skip_existing=true relax_method_ligands_post_ranking=true export_file_format=casp15 export_top_n=5 combine_casp_output_files=true max_method_predictions=40 method_top_n_to_select=40 resume=true ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 cuda_device_index=0 ensemble_benchmarking_repeat_index=1
# NOTE: the suffixes for both `output_dir` and `ensemble_benchmarking_repeat_index` should be modified to e.g., 2, 3, ...
...
# now score the CASP15-compliant submissions using the official CASP scoring pipeline
python3 multicom_ligand/analysis/inference_analysis_casp.py method=neuralplexer dataset=casp15 repeat_index=1
...

How to run inference with RoseTTAFold-All-Atom

Prepare CSV input files

python3 multicom_ligand/data/rfaa_input_preparation.py dataset=posebusters_benchmark
python3 multicom_ligand/data/rfaa_input_preparation.py dataset=astex_diverse
python3 multicom_ligand/data/rfaa_input_preparation.py dataset=dockgen
python3 multicom_ligand/data/rfaa_input_preparation.py dataset=casp15 input_data_dir="$PWD"/data/casp15_set/targets

Run inference on each dataset

conda activate forks/RoseTTAFold-All-Atom/RFAA/
python3 multicom_ligand/models/rfaa_inference.py dataset=posebusters_benchmark run_inference_directly=true
python3 multicom_ligand/models/rfaa_inference.py dataset=astex_diverse run_inference_directly=true
python3 multicom_ligand/models/rfaa_inference.py dataset=dockgen run_inference_directly=true
python3 multicom_ligand/models/rfaa_inference.py dataset=casp15 run_inference_directly=true
conda deactivate

Extract predictions into separate files for proteins and ligands

python3 multicom_ligand/data/rfaa_output_extraction.py dataset=posebusters_benchmark
python3 multicom_ligand/data/rfaa_output_extraction.py dataset=astex_diverse
python3 multicom_ligand/data/rfaa_output_extraction.py dataset=dockgen
python3 multicom_ligand/data/rfaa_output_extraction.py dataset=casp15

Relax the generated ligand structures inside of their respective protein pockets

python3 multicom_ligand/models/inference_relaxation.py method=rfaa dataset=posebusters_benchmark num_processes=1 remove_initial_protein_hydrogens=true
python3 multicom_ligand/models/inference_relaxation.py method=rfaa dataset=astex_diverse num_processes=1 remove_initial_protein_hydrogens=true
python3 multicom_ligand/models/inference_relaxation.py method=rfaa dataset=dockgen num_processes=1 remove_initial_protein_hydrogens=true

NOTE: Increase num_processes according to your available CPU/GPU resources to improve throughput

Align predicted protein-ligand structures to ground-truth complex structures

python3 multicom_ligand/analysis/complex_alignment.py method=rfaa dataset=posebusters_benchmark
python3 multicom_ligand/analysis/complex_alignment.py method=rfaa dataset=astex_diverse
python3 multicom_ligand/analysis/complex_alignment.py method=rfaa dataset=dockgen

Analyze inference results for each dataset

python3 multicom_ligand/analysis/inference_analysis.py method=rfaa dataset=posebusters_benchmark
python3 multicom_ligand/analysis/inference_analysis.py method=rfaa dataset=astex_diverse
python3 multicom_ligand/analysis/inference_analysis.py method=rfaa dataset=dockgen

Analyze inference results for the CASP15 dataset

# first assemble (unrelaxed and post ranking-relaxed) CASP15-compliant prediction submission files for scoring
python3 multicom_ligand/models/ensemble_generation.py ensemble_methods=\[rfaa\] input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_rfaa_ensemble_predictions_1 skip_existing=true relax_method_ligands_post_ranking=false export_file_format=casp15 export_top_n=5 combine_casp_output_files=true max_method_predictions=40 method_top_n_to_select=40 resume=true ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 cuda_device_index=0 ensemble_benchmarking_repeat_index=1
python3 multicom_ligand/models/ensemble_generation.py ensemble_methods=\[rfaa\] input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_rfaa_ensemble_predictions_1 skip_existing=true relax_method_ligands_post_ranking=true export_file_format=casp15 export_top_n=5 combine_casp_output_files=true max_method_predictions=40 method_top_n_to_select=40 resume=true ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 cuda_device_index=0 ensemble_benchmarking_repeat_index=1
# NOTE: the suffixes for both `output_dir` and `ensemble_benchmarking_repeat_index` should be modified to e.g., 2, 3, ...
...
# now score the CASP15-compliant submissions using the official CASP scoring pipeline
python3 multicom_ligand/analysis/inference_analysis_casp.py method=rfaa dataset=casp15 targets="[T1124, T1127v2, T1146, T1152, T1158v1, T1158v2, T1158v3, T1158v4, T1186, T1187, T1188]" repeat_index=1
...

How to run inference with AutoDock Vina

Prepare CSV input files

cp forks/DiffDock/inference/diffdock_posebusters_benchmark_inputs.csv forks/Vina/inference/vina_posebusters_benchmark_inputs.csv
cp forks/DiffDock/inference/diffdock_astex_diverse_inputs.csv forks/Vina/inference/vina_astex_diverse_inputs.csv
cp forks/DiffDock/inference/diffdock_dockgen_inputs.csv forks/Vina/inference/vina_dockgen_inputs.csv
cp forks/DiffDock/inference/diffdock_casp15_inputs.csv forks/Vina/inference/vina_casp15_inputs.csv

Run inference on each dataset

python3 multicom_ligand/models/vina_inference.py dataset=posebusters_benchmark method=diffdock repeat_index=1 # NOTE: DiffDock-L's binding pockets are recommended as the default Vina input
...
python3 multicom_ligand/models/vina_inference.py dataset=astex_diverse method=diffdock repeat_index=1
...
python3 multicom_ligand/models/vina_inference.py dataset=dockgen method=diffdock repeat_index=1
...
python3 multicom_ligand/models/vina_inference.py dataset=casp15 method=diffdock repeat_index=1
...

Copy Vina's predictions to the corresponding inference directory for each repeat

mkdir -p forks/Vina/inference/vina_diffdock_posebusters_benchmark_outputs_1 && cp -r data/test_cases/posebusters_benchmark/vina_diffdock_posebusters_benchmark_outputs_1/* forks/Vina/inference/vina_diffdock_posebusters_benchmark_outputs_1
...
mkdir -p forks/Vina/inference/vina_diffdock_astex_diverse_outputs_1 && cp -r data/test_cases/astex_diverse/vina_diffdock_astex_diverse_outputs_1/* forks/Vina/inference/vina_diffdock_astex_diverse_outputs_1
...
mkdir -p forks/Vina/inference/vina_diffdock_dockgen_outputs_1 && cp -r data/test_cases/dockgen/vina_diffdock_dockgen_outputs_1/* forks/Vina/inference/vina_diffdock_dockgen_outputs_1
...
mkdir -p forks/Vina/inference/vina_diffdock_casp15_outputs_1 && cp -r data/test_cases/casp15/vina_diffdock_casp15_outputs_1/* forks/Vina/inference/vina_diffdock_casp15_outputs_1
...

Relax the generated ligand structures inside of their respective protein pockets

python3 multicom_ligand/models/inference_relaxation.py method=vina vina_binding_site_method=diffdock dataset=posebusters_benchmark remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1 repeat_index=1
...
python3 multicom_ligand/models/inference_relaxation.py method=vina vina_binding_site_method=diffdock dataset=astex_diverse remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1 repeat_index=1
...
python3 multicom_ligand/models/inference_relaxation.py method=vina vina_binding_site_method=diffdock dataset=dockgen remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1 repeat_index=1
...

NOTE: Increase num_processes according to your available CPU/GPU resources to improve throughput

Analyze inference results for each dataset

python3 multicom_ligand/analysis/inference_analysis.py method=vina vina_binding_site_method=diffdock dataset=posebusters_benchmark repeat_index=1
...
python3 multicom_ligand/analysis/inference_analysis.py method=vina vina_binding_site_method=diffdock dataset=astex_diverse repeat_index=1
...
python3 multicom_ligand/analysis/inference_analysis.py method=vina vina_binding_site_method=diffdock dataset=dockgen repeat_index=1
...

Analyze inference results for the CASP15 dataset

# assemble (unrelaxed and post ranking-relaxed) CASP15-compliant prediction submission files for scoring
python3 multicom_ligand/models/ensemble_generation.py ensemble_methods=\[vina\] vina_binding_site_methods=\[diffdock\] input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_vina_diffdock_ensemble_predictions_1 skip_existing=true relax_method_ligands_post_ranking=false export_file_format=casp15 export_top_n=5 combine_casp_output_files=true max_method_predictions=40 method_top_n_to_select=40 resume=true ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 cuda_device_index=0 ensemble_benchmarking_repeat_index=1
python3 multicom_ligand/models/ensemble_generation.py ensemble_methods=\[vina\] vina_binding_site_methods=\[diffdock\] input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_vina_diffdock_ensemble_predictions_1 skip_existing=true relax_method_ligands_post_ranking=true export_file_format=casp15 export_top_n=5 combine_casp_output_files=true max_method_predictions=40 method_top_n_to_select=40 resume=true ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 cuda_device_index=0 ensemble_benchmarking_repeat_index=1
# NOTE: the suffixes for both `output_dir` and `ensemble_benchmarking_repeat_index` should be modified to e.g., 2, 3, ...
...
# now score the CASP15-compliant submissions using the official CASP scoring pipeline
python3 multicom_ligand/analysis/inference_analysis_casp.py method=vina vina_binding_site_method=diffdock dataset=casp15 repeat_index=1
...

How to run inference with TULIP

Gather all template ligands generated by TULIP via its dedicated GitHub repository and collate the resulting ligand fragment SDF files

python3 multicom_ligand/data/tulip_output_extraction.py dataset=posebusters_benchmark
python3 multicom_ligand/data/tulip_output_extraction.py dataset=astex_diverse
python3 multicom_ligand/data/tulip_output_extraction.py dataset=casp15

Relax the generated ligand structures inside of their respective protein pockets

python3 multicom_ligand/models/inference_relaxation.py method=tulip dataset=posebusters_benchmark remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1
...
python3 multicom_ligand/models/inference_relaxation.py method=tulip dataset=astex_diverse remove_initial_protein_hydrogens=true assign_partial_charges_manually=true num_processes=1
...

NOTE: Increase num_processes according to your available CPU/GPU resources to improve throughput

Analyze inference results for each dataset

python3 multicom_ligand/analysis/inference_analysis.py method=tulip dataset=posebusters_benchmark
...
python3 multicom_ligand/analysis/inference_analysis.py method=tulip dataset=astex_diverse
...

Analyze inference results for the CASP15 dataset

# then assemble (unrelaxed and post ranking-relaxed) CASP15-compliant prediction submission files for scoring
python3 multicom_ligand/models/ensemble_generation.py ensemble_methods=\[tulip\] input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_tulip_ensemble_predictions_1 skip_existing=true relax_method_ligands_post_ranking=false export_file_format=casp15 export_top_n=5 combine_casp_output_files=true max_method_predictions=40 method_top_n_to_select=40 resume=true ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 cuda_device_index=0 ensemble_benchmarking_repeat_index=1
python3 multicom_ligand/models/ensemble_generation.py ensemble_methods=\[tulip\] input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_tulip_ensemble_predictions_1 skip_existing=true relax_method_ligands_post_ranking=true export_file_format=casp15 export_top_n=5 combine_casp_output_files=true max_method_predictions=40 method_top_n_to_select=40 resume=true ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 cuda_device_index=0 ensemble_benchmarking_repeat_index=1
# NOTE: the suffixes for both `output_dir` and `ensemble_benchmarking_repeat_index` should be modified to e.g., 2, 3, ...
...
# now score the CASP15-compliant submissions using the official CASP scoring pipeline
python3 multicom_ligand/analysis/inference_analysis_casp.py method=tulip dataset=casp15 targets='[H1135, H1171v1, H1171v2, H1172v1, H1172v2, H1172v3, H1172v4, T1124, T1127v2, T1152, T1158v1, T1158v2, T1158v3, T1158v4, T1186, T1187]'
...

How to run inference with a method ensemble

Using an ensemble of methods, generate predictions for a new protein target using each method and (e.g., consensus-)rank the pool of predictions

# generate each method's prediction script for a target
# NOTE: to predict input ESMFold protein structures when they are not already locally available in `data/ensemble_proteins/`, e.g., on a SLURM cluster first run e.g., `srun --partition=gpu --gres=gpu:A100:1 --mem=59G --time=01:00:00 --pty bash` to ensure a GPU is available for inference
python3 multicom_ligand/models/ensemble_generation.py input_csv_filepath=data/test_cases/5S8I_2LY/ensemble_inputs.csv output_dir=data/test_cases/5S8I_2LY/top_consensus_ensemble_predictions_1 max_method_predictions=40 ensemble_ranking_method=consensus resume=false ensemble_methods='[diffdock, dynamicbind, neuralplexer, rfaa]'
# ...
# now, manually run each desired method's generated prediction script, with the exception of AutoDock Vina which uses other methods' predictions
# ...
python3 multicom_ligand/models/ensemble_generation.py input_csv_filepath=data/test_cases/5S8I_2LY/ensemble_inputs.csv output_dir=data/test_cases/5S8I_2LY/top_consensus_ensemble_predictions_1 max_method_predictions=40 ensemble_ranking_method=consensus resume=true generate_vina_scripts=true vina_binding_site_methods=[diffdock]
# now, manually run AutoDock Vina's generated prediction script for each binding site prediction method
#...
# lastly, organize each method's predictions together
python3 multicom_ligand/models/ensemble_generation.py input_csv_filepath=data/test_cases/5S8I_2LY/ensemble_inputs.csv output_dir=data/test_cases/5S8I_2LY/top_consensus_ensemble_predictions_1 max_method_predictions=40 ensemble_ranking_method=consensus resume=true generate_vina_scripts=false vina_binding_site_methods=[diffdock]

Benchmark (ensemble-)ranked predictions across each test dataset

# benchmark using the PoseBusters Benchmark dataset e.g., after generating 40 complexes per target with each method
python3 multicom_ligand/models/ensemble_generation.py input_csv_filepath=data/test_cases/posebusters_benchmark/ensemble_inputs.csv output_dir=data/test_cases/posebusters_benchmark/top_consensus_ensemble_predictions_1 max_method_predictions=40 export_top_n=1 export_file_format=null skip_existing=true relax_method_ligands_post_ranking=false resume=true cuda_device_index=0 ensemble_methods='[diffdock, dynamicbind, neuralplexer, rfaa, tulip, vina]' ensemble_benchmarking=true ensemble_benchmarking_dataset=posebusters_benchmark ensemble_ranking_method=consensus ensemble_benchmarking_repeat_index=1
python3 multicom_ligand/models/ensemble_generation.py input_csv_filepath=data/test_cases/posebusters_benchmark/ensemble_inputs.csv output_dir=data/test_cases/posebusters_benchmark/top_consensus_ensemble_predictions_1 max_method_predictions=40 export_top_n=1 export_file_format=null skip_existing=true relax_method_ligands_post_ranking=true resume=true cuda_device_index=0 ensemble_methods='[diffdock, dynamicbind, neuralplexer, rfaa, tulip, vina]' ensemble_benchmarking=true ensemble_benchmarking_dataset=posebusters_benchmark ensemble_ranking_method=consensus ensemble_benchmarking_repeat_index=1
...
# benchmark using the Astex Diverse dataset e.g., after generating 40 complexes per target with each method
python3 multicom_ligand/models/ensemble_generation.py input_csv_filepath=data/test_cases/astex_diverse/ensemble_inputs.csv output_dir=data/test_cases/astex_diverse/top_consensus_ensemble_predictions_1 max_method_predictions=40 export_top_n=1 export_file_format=null skip_existing=true relax_method_ligands_post_ranking=false resume=true cuda_device_index=0 ensemble_methods='[diffdock, dynamicbind, neuralplexer, rfaa, tulip, vina]' ensemble_benchmarking=true ensemble_benchmarking_dataset=astex_diverse ensemble_ranking_method=consensus ensemble_benchmarking_repeat_index=1
python3 multicom_ligand/models/ensemble_generation.py input_csv_filepath=data/test_cases/astex_diverse/ensemble_inputs.csv output_dir=data/test_cases/astex_diverse/top_consensus_ensemble_predictions_1 max_method_predictions=40 export_top_n=1 export_file_format=null skip_existing=true relax_method_ligands_post_ranking=true resume=true cuda_device_index=0 ensemble_methods='[diffdock, dynamicbind, neuralplexer, rfaa, tulip, vina]' ensemble_benchmarking=true ensemble_benchmarking_dataset=astex_diverse ensemble_ranking_method=consensus ensemble_benchmarking_repeat_index=1
...
# benchmark using the DockGen dataset e.g., after generating 40 complexes per target with each method
python3 multicom_ligand/models/ensemble_generation.py input_csv_filepath=data/test_cases/dockgen/ensemble_inputs.csv output_dir=data/test_cases/dockgen/top_consensus_ensemble_predictions_1 max_method_predictions=40 export_top_n=1 export_file_format=null skip_existing=true relax_method_ligands_post_ranking=false resume=true cuda_device_index=0 ensemble_methods='[diffdock, dynamicbind, neuralplexer, rfaa, vina]' ensemble_benchmarking=true ensemble_benchmarking_dataset=dockgen ensemble_ranking_method=consensus ensemble_benchmarking_repeat_index=1
python3 multicom_ligand/models/ensemble_generation.py input_csv_filepath=data/test_cases/dockgen/ensemble_inputs.csv output_dir=data/test_cases/dockgen/top_consensus_ensemble_predictions_1 max_method_predictions=40 export_top_n=1 export_file_format=null skip_existing=true relax_method_ligands_post_ranking=true resume=true cuda_device_index=0 ensemble_methods='[diffdock, dynamicbind, neuralplexer, rfaa, vina]' ensemble_benchmarking=true ensemble_benchmarking_dataset=dockgen ensemble_ranking_method=consensus ensemble_benchmarking_repeat_index=1
...
# benchmark using the CASP15 dataset e.g., after generating 40 complexes per target with each method
python3 multicom_ligand/models/ensemble_generation.py input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_consensus_ensemble_predictions_1 combine_casp_output_files=true max_method_predictions=40 export_top_n=5 export_file_format=casp15 skip_existing=true relax_method_ligands_post_ranking=false resume=true cuda_device_index=0 ensemble_methods='[diffdock, dynamicbind, neuralplexer, rfaa, tulip, vina]' ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 ensemble_ranking_method=consensus ensemble_benchmarking_repeat_index=1
python3 multicom_ligand/models/ensemble_generation.py input_csv_filepath=data/test_cases/casp15/ensemble_inputs.csv output_dir=data/test_cases/casp15/top_consensus_ensemble_predictions_1 combine_casp_output_files=true max_method_predictions=40 export_top_n=5 export_file_format=casp15 skip_existing=true relax_method_ligands_post_ranking=true resume=true cuda_device_index=0 ensemble_methods='[diffdock, dynamicbind, neuralplexer, rfaa, tulip, vina]' ensemble_benchmarking=true ensemble_benchmarking_dataset=casp15 ensemble_ranking_method=consensus ensemble_benchmarking_repeat_index=1
...
# analyze benchmarking results for the PoseBusters Benchmark dataset
python3 multicom_ligand/analysis/inference_analysis.py method=ensemble dataset=posebusters_benchmark repeat_index=1
...
# analyze benchmarking results for the Astex Diverse dataset
python3 multicom_ligand/analysis/inference_analysis.py method=ensemble dataset=astex_diverse repeat_index=1
...
# analyze benchmarking results for the DockGen dataset
python3 multicom_ligand/analysis/inference_analysis.py method=ensemble dataset=dockgen repeat_index=1
...
# analyze benchmarking results for the CASP15 dataset
python3 multicom_ligand/analysis/inference_analysis_casp.py method=ensemble dataset=casp15 ensemble_ranking_method=consensus repeat_index=1
...

To benchmark ensemble ranking using the above commands, you must have already run the corresponding *_inference.py script for each method described in the section How to run inference with individual methods (with the exception of FABind, which will not referenced during CASP15 benchmarking)

NOTE: In addition to having consensus as an available value for ensemble_ranking_method, one can also set ensemble_ranking_method=ff to have the method ensemble's top-ranked predictions selected using the criterion of "minimum (molecular dynamics) force field energy" (albeit while incurring a very large runtime complexity)

How to create comparative plots of inference results

Execute (and customize as desired) notebooks to prepare paper-ready result plots

jupyter notebook notebooks/posebusters_astex_inference_results_plotting.ipynb
jupyter notebook notebooks/posebusters_pocket_only_inference_results_plotting.ipynb
jupyter notebook notebooks/dockgen_inference_results_plotting.ipynb
jupyter notebook notebooks/casp15_inference_results_plotting.ipynb

For developers

Dependency management

We use mamba to manage the project's underlying dependencies. Notably, to update the dependencies listed in a particular environments/*_environment.yml file:

mamba env export > env.yaml # e.g., run this after installing new dependencies locally within a given `conda` environment
diff environments/multicom_ligand_environment.yaml env.yaml # note the differences and copy accepted changes back into e.g., `environments/multicom_ligand_environment.yaml`
rm env.yaml # clean up temporary environment file

Code formatting

We use pre-commit to automatically format the project's code. To set up pre-commit (one time only) for automatic code linting and formatting upon each execution of git commit:

pre-commit install

To manually reformat all files in the project as desired:

pre-commit run -a

Documentation

We sphinx to maintain the project's code documentation. To build a local version of the project's sphinx documentation web pages:

# assuming you are located in the `MULTICOM_ligand` top-level directory
pip install -r docs/.docs.requirements # one-time only
rm -rf docs/build/ && sphinx-build docs/source/ docs/build/ # NOTE: errors can safely be ignored

Acknowledgements

MULTICOM_ligand builds upon the source code and data from the following projects:

We thank all their contributors and maintainers!

Citing this work

If you use the code or benchmark method predictions associated with this repository or otherwise find this work useful, please cite:

@inproceedings{morehead2024multicom,
  title={Protein-ligand structure and affinity prediction in CASP16 using a geometric deep learning ensemble and flow matching},
  author={Morehead, Alex and Liu, Jian and Neupane, Pawan and Giri, Nabin and Cheng, Jianlin},
  booktitle={CASP16 Abstracts},
  year={2025},
  note={presented at CASP16 as a top-5 ligand prediction method},
}

Bonus

Lastly, thanks to Stable Diffusion for generating this quaint representation of what my brain looked like after assembling this codebase. 💣