Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[nsys-jax] Add ratio of hidden communication time to total communication time #1241

Merged
merged 6 commits into from
Jan 16, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
162 changes: 140 additions & 22 deletions .github/container/nsys_jax/nsys_jax/analyses/communication.py
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,38 +1,21 @@
#!/usr/bin/env python
import argparse
import csv
from collections import defaultdict

from nsys_jax import (
align_profiler_data_timestamps,
apply_warmup_heuristics,
ensure_compiled_protos_are_importable,
load_profiler_data,
)
from math import sqrt
from prettytable import PrettyTable
import pathlib
from uncertainties import ufloat # type: ignore


def main():
parser = argparse.ArgumentParser(
description="Summarise communication in an nsys-jax report"
)
parser.add_argument("prefix", type=pathlib.Path)
args = parser.parse_args()
# Make sure that the .proto files under protos/ have been compiled to .py, and
# that those generated .py files are importable.
ensure_compiled_protos_are_importable(prefix=args.prefix)
# Load the profiler data; the compilation part is needed for the warmup heuristics
all_data = load_profiler_data(args.prefix, frames={"communication", "compile"})
# Align timestamps
all_data, alignment_metadata = align_profiler_data_timestamps(all_data)
# TODO: make this pretty
# print(alignment_metadata)
# Partition the profile data into initialisation and steady-state running
_, steady_state = apply_warmup_heuristics(all_data)
assert len(steady_state.communication), (
"Communication summary was requested but no steady-state communication was "
"identified."
)
def process_communication_data(steady_state):
collective_types = set()
summary_data = defaultdict(dict)
for (collective, message_size), df in steady_state.communication.groupby(
Expand All @@ -52,7 +35,10 @@ def main():
summary_data[message_size][collective] = ufloat(
bandwidth.mean(), bandwidth.std() / sqrt(len(bandwidth))
)
collective_types = sorted(collective_types)
return sorted(collective_types), summary_data


def print_bandwidth_table(collective_types, summary_data):
collective_widths = {
collective: max(
len(collective),
Expand Down Expand Up @@ -96,5 +82,137 @@ def format_bandwidth(data, collective):
)


def process_hidden_ms_to_total_ms(steady_state):
if steady_state.communication["ProjDurHiddenMs"].sum() == 0:
return None, None

collective_types = set()
summary_data = defaultdict(dict)
for collective, df in steady_state.communication.groupby(["Collective"]):
collective_types.add(collective)
mean_dur_hidden_ms_to_total_ms = (
df["ProjDurHiddenMs"] / (df["ProjDurMs"] + df["ProjDurHiddenMs"])
).mean()
summary_data[collective] = mean_dur_hidden_ms_to_total_ms
return collective_types, summary_data


def print_hidden_ms_to_total_ms_table(
collective_types, summary_data, overall_hidden_ms_to_total_ms
):
table = PrettyTable()
table.field_names = ["Collective", "Mean HiddenToTotalMs"]

for collective in collective_types:
mean_value = summary_data[collective]
table.add_row([collective[0], mean_value])

print(table)
sfvaroglu marked this conversation as resolved.
Show resolved Hide resolved
print("Overall HiddenMs to TotalMs:", overall_hidden_ms_to_total_ms)


def calculate_overall_hidden_ms_to_total_ms(steady_state):
if steady_state.communication["ProjDurHiddenMs"].sum() == 0:
return None

overall_hidden_ms_to_total_ms = (
steady_state.communication["ProjDurHiddenMs"].sum()
/ (
steady_state.communication["ProjDurMs"]
+ steady_state.communication["ProjDurHiddenMs"]
).sum()
)
return overall_hidden_ms_to_total_ms


def write_to_csv(
collective_types,
bandwidth_summary,
hidden_to_total_summary,
overall_hidden_ms_to_total_ms,
output_file,
):
with open(output_file, "w", newline="") as csvfile:
writer = csv.writer(csvfile)

# Write bandwidth table
writer.writerow(["Bandwidth Table"])
writer.writerow(["Size [B]"] + list(collective_types))
for message_size in sorted(bandwidth_summary.keys()):
row = [message_size]
for collective in collective_types:
if collective in bandwidth_summary[message_size]:
row.append(f"{bandwidth_summary[message_size][collective]:S}")
else:
row.append("-")
writer.writerow(row)

writer.writerow([]) # Empty row for separation

# Write hidden to total table if data is available
if hidden_to_total_summary is not None:
writer.writerow(["HiddenMs to TotalMs Table"])
writer.writerow(["Collective", "Mean HiddenToTotalMs"])
for collective in hidden_to_total_summary:
writer.writerow([collective[0], hidden_to_total_summary[collective]])

writer.writerow([]) # Empty row for separation

if overall_hidden_ms_to_total_ms is not None:
writer.writerow(
["Overall HiddenMs to TotalMs", overall_hidden_ms_to_total_ms]
)


def main():
parser = argparse.ArgumentParser(
description="Summarise communication in an nsys-jax report"
)
parser.add_argument("prefix", type=pathlib.Path)
args = parser.parse_args()

# Make sure that the .proto files under protos/ have been compiled to .py, and
# that those generated .py files are importable.
ensure_compiled_protos_are_importable(prefix=args.prefix)
# Load the profiler data; the compilation part is needed for the warmup heuristics
all_data = load_profiler_data(args.prefix, frames={"communication", "compile"})
# Align timestamps
all_data, alignment_metadata = align_profiler_data_timestamps(all_data)
# TODO: make this pretty
# print(alignment_metadata)
# Partition the profile data into initialisation and steady-state running
_, steady_state = apply_warmup_heuristics(all_data)

assert len(steady_state.communication), (
"Communication summary was requested but no steady-state communication was "
"identified."
)

collective_types, bandwidth_summary = process_communication_data(steady_state)
print_bandwidth_table(collective_types, bandwidth_summary)

hidden_to_total_collective_types, hidden_to_total_summary = (
process_hidden_ms_to_total_ms(steady_state)
)
if hidden_to_total_summary is not None:
overall_hidden_ms_to_total_ms = calculate_overall_hidden_ms_to_total_ms(
steady_state
)
print_hidden_ms_to_total_ms_table(
hidden_to_total_collective_types,
hidden_to_total_summary,
overall_hidden_ms_to_total_ms,
)

# Write all tables to a single CSV file
write_to_csv(
collective_types,
bandwidth_summary,
hidden_to_total_summary,
overall_hidden_ms_to_total_ms,
"communication_summary.csv",
)


if __name__ == "__main__":
main()
Empty file modified .github/container/nsys_jax/nsys_jax/analysis.py
100644 → 100755
Empty file.
1 change: 1 addition & 0 deletions .github/container/nsys_jax/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ dependencies = [
"pyarrow",
"requests", # for install-protoc
"uncertainties", # communication analysis recipe
"prettytable",
]
requires-python = ">= 3.10"

Expand Down
Loading