Skip to content

Commit

Permalink
sits training data poc
Browse files Browse the repository at this point in the history
sits training data poc
  • Loading branch information
PondiB authored Nov 6, 2023
2 parents 2546834 + cf9839a commit 2997cb5
Show file tree
Hide file tree
Showing 2 changed files with 53 additions and 14 deletions.
38 changes: 24 additions & 14 deletions playground/poc_sitsdata.R
Original file line number Diff line number Diff line change
@@ -1,23 +1,33 @@
library(sitsdata)
library(sits)
library(jsonlite)
library(geojsonsf)
library(dplyr)
library(purrr)

sits_data <- sitsdata::samples_prodes_4classes
sits_data

sits_data$time_series[[1]]

sf_samples <- sits::sits_as_sf(sits_data)
## get sits data
out <- sitsdata::samples_prodes_4classes |> tidyr::unnest(cols = c(time_series))

sf_samples
## convert to json on client side
out_to_json <- jsonlite::toJSON(out)

## convert to from json to sits tibble on sever side
data <- jsonlite::fromJSON(out_to_json)

json_samples <- jsonlite::fromJSON(jsonlite::toJSON(sf_samples), simplifyDataFrame = F, simplifyMatrix = F)
json_samples
orig <- data |> tidyr::nest(
.by = c(longitude, latitude, start_date, end_date, label, cube),
.key = "time_series")

sf_to_json <- geojsonsf::sf_geojson(sf_samples)
sf_to_json
### function to convert 'Index' column to Date
convert_index_to_date <- function(data) {
data |> mutate(Index = as.Date(Index))
}

json_to_sf <- geojsonsf::geojson_sf(json_samples)
json_to_sf

orig <- orig |>
mutate(time_series = map(time_series, convert_index_to_date),
start_date = as.Date(start_date),
end_date = as.Date(end_date))

orig = structure(orig, class = c("sits", class(orig)))

all.equal(orig, samples_prodes_4classes)
29 changes: 29 additions & 0 deletions playground/poc_vector_datacube.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
library(sits)
library(sitsdata)
library(stars)
samples_prodes_4classes
# get dimensions
(time = samples_prodes_4classes$time_series[[1]]$Index)
samples_prodes_4classes |>
st_as_sf(coords = c("longitude", "latitude"), crs = "OGC:CRS84") |>
st_geometry()-> points
points
bands = colnames(samples_prodes_4classes$time_series[[1]])[-1]
bands
# merge all time series:
cube = do.call(rbind, samples_prodes_4classes$time_series)
cube$Index = NULL
cube = as.matrix(cube)
dim(cube)
dim(cube) = c(time = length(time), geom = length(points), band = length(bands))
dim(cube)
# create stars object:
st_as_stars(cube, raster = list(dimensions = c(NA_character_,NA_character_))) |>
st_set_dimensions(1, values = as.Date(time)) |>
st_set_dimensions(2, values = points) |>
st_set_dimensions(3, values = bands) -> st
st
# print slices:
image(st[[1]][1,,])
image(st[[1]][,1,])
image(st[[1]][,,1])

0 comments on commit 2997cb5

Please sign in to comment.