-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ccf373d
commit a8c16c6
Showing
4 changed files
with
1,102 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,242 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Training a model with PyTorch Lightning\n", | ||
"\n", | ||
"This tutorial provides a quick overview of training a toy model with Lightning, using the `tiledbsoma_ml.ExperimentAxisQueryIterableDataset` class, on data from the [CZI CELLxGENE Census](https://chanzuckerberg.github.io/cellxgene-census/) dataset. This is intended only to demonstrate the use of the `ExperimentAxisQueryIterableDataset`, and not as an example of how to train a biologically useful model.\n", | ||
"\n", | ||
"For more information on these API, please refer to the [`tutorial_pytorch` notebook](tutorial_pytorch.ipynb).\n", | ||
"\n", | ||
"**Prerequesites**\n", | ||
"\n", | ||
"Install `tiledbsoma_ml` and `scikit-learn`, for example:\n", | ||
"\n", | ||
"> pip install tiledbsoma_ml scikit-learn\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Initialize SOMA Experiment query as training data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"/home/bruce/miniforge3/envs/toymodel/lib/python3.11/site-packages/torchdata/datapipes/__init__.py:18: UserWarning: \n", | ||
"################################################################################\n", | ||
"WARNING!\n", | ||
"The 'datapipes', 'dataloader2' modules are deprecated and will be removed in a\n", | ||
"future torchdata release! Please see https://github.com/pytorch/data/issues/1196\n", | ||
"to learn more and leave feedback.\n", | ||
"################################################################################\n", | ||
"\n", | ||
" deprecation_warning()\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import pytorch_lightning as pl\n", | ||
"import tiledbsoma as soma\n", | ||
"import torch\n", | ||
"from sklearn.preprocessing import LabelEncoder\n", | ||
"\n", | ||
"import tiledbsoma_ml as soma_ml\n", | ||
"\n", | ||
"CZI_Census_Homo_Sapiens_URL = \"s3://cellxgene-census-public-us-west-2/cell-census/2024-07-01/soma/census_data/homo_sapiens/\"\n", | ||
"\n", | ||
"experiment = soma.open(\n", | ||
" CZI_Census_Homo_Sapiens_URL,\n", | ||
" context=soma.SOMATileDBContext(tiledb_config={\"vfs.s3.region\": \"us-west-2\"}),\n", | ||
")\n", | ||
"obs_value_filter = \"tissue_general == 'tongue' and is_primary_data == True\"\n", | ||
"\n", | ||
"with experiment.axis_query(\n", | ||
" measurement_name=\"RNA\", obs_query=soma.AxisQuery(value_filter=obs_value_filter)\n", | ||
") as query:\n", | ||
" obs_df = query.obs(column_names=[\"cell_type\"]).concat().to_pandas()\n", | ||
" cell_type_encoder = LabelEncoder().fit(obs_df[\"cell_type\"].unique())\n", | ||
"\n", | ||
" experiment_dataset = soma_ml.ExperimentAxisQueryIterableDataset(\n", | ||
" query,\n", | ||
" X_name=\"raw\",\n", | ||
" obs_column_names=[\"cell_type\"],\n", | ||
" batch_size=128,\n", | ||
" shuffle=True,\n", | ||
" )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Define the Lightning module" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class LogisticRegressionLightning(pl.LightningModule):\n", | ||
" def __init__(self, input_dim, output_dim, cell_type_encoder, learning_rate=1e-5):\n", | ||
" super(LogisticRegressionLightning, self).__init__()\n", | ||
" self.linear = torch.nn.Linear(input_dim, output_dim)\n", | ||
" self.cell_type_encoder = cell_type_encoder\n", | ||
" self.learning_rate = learning_rate\n", | ||
" self.loss_fn = torch.nn.CrossEntropyLoss()\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" outputs = torch.sigmoid(self.linear(x))\n", | ||
" return outputs\n", | ||
"\n", | ||
" def training_step(self, batch, batch_idx):\n", | ||
" X_batch, y_batch = batch\n", | ||
" # X_batch = X_batch.float()\n", | ||
" X_batch = torch.from_numpy(X_batch).float().to(self.device)\n", | ||
"\n", | ||
" # Perform prediction\n", | ||
" outputs = self(X_batch)\n", | ||
"\n", | ||
" # Determine the predicted label\n", | ||
" probabilities = torch.nn.functional.softmax(outputs, 1)\n", | ||
" predictions = torch.argmax(probabilities, axis=1)\n", | ||
"\n", | ||
" # Compute loss\n", | ||
" y_batch = torch.from_numpy(\n", | ||
" self.cell_type_encoder.transform(y_batch[\"cell_type\"])\n", | ||
" ).to(self.device)\n", | ||
" loss = self.loss_fn(outputs, y_batch.long())\n", | ||
"\n", | ||
" # Compute accuracy\n", | ||
" train_correct = (predictions == y_batch).sum().item()\n", | ||
" train_accuracy = train_correct / len(predictions)\n", | ||
"\n", | ||
" # Log loss and accuracy\n", | ||
" self.log(\"train_loss\", loss, prog_bar=True)\n", | ||
" self.log(\"train_accuracy\", train_accuracy, prog_bar=True)\n", | ||
"\n", | ||
" return loss\n", | ||
"\n", | ||
" def configure_optimizers(self):\n", | ||
" optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)\n", | ||
" return optimizer" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Train the model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"GPU available: True (cuda), used: True\n", | ||
"TPU available: False, using: 0 TPU cores\n", | ||
"HPU available: False, using: 0 HPUs\n", | ||
"/home/bruce/miniforge3/envs/toymodel/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/logger_connector/logger_connector.py:75: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `pytorch_lightning` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n", | ||
"LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", | ||
"\n", | ||
" | Name | Type | Params | Mode \n", | ||
"-----------------------------------------------------\n", | ||
"0 | linear | Linear | 726 K | train\n", | ||
"1 | loss_fn | CrossEntropyLoss | 0 | train\n", | ||
"-----------------------------------------------------\n", | ||
"726 K Trainable params\n", | ||
"0 Non-trainable params\n", | ||
"726 K Total params\n", | ||
"2.905 Total estimated model params size (MB)\n", | ||
"2 Modules in train mode\n", | ||
"0 Modules in eval mode\n", | ||
"/home/bruce/miniforge3/envs/toymodel/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=19` in the `DataLoader` to improve performance.\n", | ||
"/home/bruce/miniforge3/envs/toymodel/lib/python3.11/site-packages/pytorch_lightning/utilities/data.py:122: Your `IterableDataset` has `__len__` defined. In combination with multi-process data loading (when num_workers > 1), `__len__` could be inaccurate if each worker is not configured independently to avoid having duplicate data.\n" | ||
] | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Epoch 19: 100%|██████████| 118/118 [00:08<00:00, 14.31it/s, v_num=5, train_loss=1.670, train_accuracy=0.977]" | ||
] | ||
}, | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"`Trainer.fit` stopped: `max_epochs=20` reached.\n" | ||
] | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Epoch 19: 100%|██████████| 118/118 [00:08<00:00, 14.28it/s, v_num=5, train_loss=1.670, train_accuracy=0.977]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"dataloader = soma_ml.experiment_dataloader(experiment_dataset)\n", | ||
"\n", | ||
"# The size of the input dimension is the number of genes\n", | ||
"input_dim = experiment_dataset.shape[1]\n", | ||
"\n", | ||
"# The size of the output dimension is the number of distinct cell_type values\n", | ||
"output_dim = len(cell_type_encoder.classes_)\n", | ||
"\n", | ||
"# Initialize the PyTorch Lightning model\n", | ||
"model = LogisticRegressionLightning(\n", | ||
" input_dim, output_dim, cell_type_encoder=cell_type_encoder\n", | ||
")\n", | ||
"\n", | ||
"# Define the PyTorch Lightning Trainer\n", | ||
"trainer = pl.Trainer(max_epochs=20)\n", | ||
"\n", | ||
"# set precision\n", | ||
"torch.set_float32_matmul_precision(\"high\")\n", | ||
"\n", | ||
"# Train the model\n", | ||
"trainer.fit(model, train_dataloaders=dataloader)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "toymodel", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.9" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.